Solveeit Logo

Question

Question: If \[2\int_0^1 {{{\tan }^{ - 1}}xdx} = \int_0^1 {{{\cot }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} \...

If 201tan1xdx=01cot1(1x+x2)dx2\int_0^1 {{{\tan }^{ - 1}}xdx} = \int_0^1 {{{\cot }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} ,then 01tan1(1x+x2)dx\int_0^1 {{{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} is equal to-
A)log2\log 2 B)π2log4\dfrac{\pi }{2} - \log 4 C)π2+log2\dfrac{\pi }{2} + \log 2 D)log4\log 4

Explanation

Solution

Hint- We can use trigonometric identity tan1x+cot1x=π2{\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2} to find01tan1(1x+x2)dx\int_0^1 {{{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} and then normally integrate the obtained equation.

Complete step-by-step answer:
Given 201tan1xdx=01cot1(1x+x2)dx2\int_0^1 {{{\tan }^{ - 1}}xdx} = \int_0^1 {{{\cot }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} and we know thattan1x+cot1x=π2{\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2} , and then we can rewrite the given equation as
201tan1xdx=01π2tan1(1x+x2)dx2\int_0^1 {{{\tan }^{ - 1}}xdx} = \int_0^1 {\dfrac{\pi }{2} - {{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx}
Now let01tan1(1x+x2)dx\int_0^1 {{{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} =I=π2201tan1xdx\dfrac{\pi }{2} - 2\int_0^1 {{{\tan }^{ - 1}}xdx}
Now on integrating 01tan1xdx\int_0^1 {{{\tan }^{ - 1}}xdx} ,we have
\dfrac{\pi }{2} - 2\left\\{ {\left( {{{\tan }^{ - 1}}x\int {1dx} } \right)_0^1 - \left[ {\left( {\dfrac{{d{{\tan }^{ - 1}}x}}{{dx}}} \right)\int {1dx} } \right]_0^1} \right\\} \\\ \\\
I=\dfrac{\pi }{2} - 2\left[ {{{\tan }^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) - \dfrac{1}{2}\left\\{ {\log \left( {1 + {x^2}} \right)} \right\\}_0^1} \right]
I=π22[π412log2]\dfrac{\pi }{2} - 2\left[ {\dfrac{\pi }{4} - \dfrac{1}{2}\log 2} \right]
I=π2π2+log2\dfrac{\pi }{2} - \dfrac{\pi }{2} + \log 2 =log2\log 2
Hence the correct answer is A.

Note: Here, we have solved01tan1xdx\int_0^1 {{{\tan }^{ - 1}}xdx} by chain rule and to solvex(1+x2)dx\int {\dfrac{x}{{\left( {1 + {x^2}} \right)}}} dx put(1+x2)=txdx=dt2\left( {1 + {x^2}} \right) = t \Rightarrow xdx = \dfrac{{dt}}{2}.On putting this value the integration becomes simple and you can easily get the answer.