Question
Question: If \[2\int_0^1 {{{\tan }^{ - 1}}xdx} = \int_0^1 {{{\cot }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} \...
If 2∫01tan−1xdx=∫01cot−1(1−x+x2)dx,then ∫01tan−1(1−x+x2)dx is equal to-
A)log2 B)2π−log4 C)2π+log2 D)log4
Solution
Hint- We can use trigonometric identity tan−1x+cot−1x=2π to find∫01tan−1(1−x+x2)dx and then normally integrate the obtained equation.
Complete step-by-step answer:
Given 2∫01tan−1xdx=∫01cot−1(1−x+x2)dx and we know thattan−1x+cot−1x=2π , and then we can rewrite the given equation as
2∫01tan−1xdx=∫012π−tan−1(1−x+x2)dx
Now let∫01tan−1(1−x+x2)dx=I=2π−2∫01tan−1xdx
Now on integrating ∫01tan−1xdx,we have
\dfrac{\pi }{2} - 2\left\\{ {\left( {{{\tan }^{ - 1}}x\int {1dx} } \right)_0^1 - \left[ {\left( {\dfrac{{d{{\tan }^{ - 1}}x}}{{dx}}} \right)\int {1dx} } \right]_0^1} \right\\} \\\
\\\
I=\dfrac{\pi }{2} - 2\left[ {{{\tan }^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) - \dfrac{1}{2}\left\\{ {\log \left( {1 + {x^2}} \right)} \right\\}_0^1} \right]
I=2π−2[4π−21log2]
I=2π−2π+log2 =log2
Hence the correct answer is A.
Note: Here, we have solved∫01tan−1xdx by chain rule and to solve∫(1+x2)xdx put(1+x2)=t⇒xdx=2dt.On putting this value the integration becomes simple and you can easily get the answer.