Solveeit Logo

Question

Question: If \(2 \cos x < \sqrt { 3 }\) and \(x \in [ - \pi , \pi ]\)then the solution set for x is...

If 2cosx<32 \cos x < \sqrt { 3 } and x[π,π]x \in [ - \pi , \pi ]then the solution set for x is

A

[π,π6)(π6,π]\left[ - \pi , \frac { - \pi } { 6 } \right) \cup \left( \frac { \pi } { 6 } , \pi \right]

B

π6,π6\frac { - \pi } { 6 } , \frac { \pi } { 6 }

C

[π,π6][π6,π]\left[ - \pi , \frac { - \pi } { 6 } \right] \cup \left[ \frac { \pi } { 6 } , \pi \right]

D

None of these

Answer

[π,π6)(π6,π]\left[ - \pi , \frac { - \pi } { 6 } \right) \cup \left( \frac { \pi } { 6 } , \pi \right]

Explanation

Solution

Here, The value scheme for this is shown below.

From the figure,

πx<π6- \pi \leq x < \frac { - \pi } { 6 } or π6<xπ\frac { \pi } { 6 } < x \leq \pi

\therefore x[π,π6)(π6,π]x \in \left[ - \pi , \frac { - \pi } { 6 } \right) \cup \left( \frac { \pi } { 6 } , \pi \right].