Solveeit Logo

Question

Question: If \[2\cos \theta + \sin \theta = 1\],\[(\theta \ne \dfrac{\pi }{2})\], then \[7\cos \theta + 6\sin ...

If 2cosθ+sinθ=12\cos \theta + \sin \theta = 1,(θπ2)(\theta \ne \dfrac{\pi }{2}), then 7cosθ+6sinθ7\cos \theta + 6\sin \theta is equal to
A. 112\dfrac{{11}}{2}
B. 465\dfrac{{46}}{5}
C. 12\dfrac{1}{2}
D. 22

Explanation

Solution

We use the first equation to write value one trigonometric function in term of other and then we square both sides to make use of the sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 and assuming one function as a variable we write the other function in terms of variable. This will give us a quadratic equation, find the roots using factorization method.

Complete step-by-step answer:
We have 2cosθ+sinθ=12\cos \theta + \sin \theta = 1
Shifting the value of sinθ\sin \theta to right and side of the equation we get
2cosθ=1sinθ\Rightarrow 2\cos \theta = 1 - \sin \theta
Squaring both sides of the equation, we get
(2cosθ)2=(1sinθ)2\Rightarrow {\left( {2\cos \theta } \right)^2} = {\left( {1 - \sin \theta } \right)^2}
4cos2θ=(1sinθ)2\Rightarrow 4{\cos ^2}\theta = {\left( {1 - \sin \theta } \right)^2} … (1)
Let us assume the value of sinθ=x\sin \theta = x
We know sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
Shifting sin2θ{\sin ^2}\theta to right hand side of the equation
cos2θ=1sin2θ\Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta
Put sin2θ=x2{\sin ^2}\theta = {x^2}
cos2θ=1x2\Rightarrow {\cos ^2}\theta = 1 - {x^2} … (2)
Substitute the value of cos2θ=1x2{\cos ^2}\theta = 1 - {x^2} from equation (2) and sinθ=x\sin \theta = x in equation (1)
4(1x2)=(1x)2\Rightarrow 4(1 - {x^2}) = {\left( {1 - x} \right)^2}
Open the right hand side of the equation by using (ab)2=a2+b22ab{(a - b)^2} = {a^2} + {b^2} - 2ab where a=1,b=xa = 1,b = x.
44x2=1+x22x\Rightarrow 4 - 4{x^2} = 1 + {x^2} - 2x
Shift all the values to one side of the equation

4x2x2+2x+41=0 5x2+2x+3=0  \Rightarrow - 4{x^2} - {x^2} + 2x + 4 - 1 = 0 \\\ \Rightarrow - 5{x^2} + 2x + 3 = 0 \\\

Taking negative sign common
5x22x3=0\Rightarrow 5{x^2} - 2x - 3 = 0
Now we can write 2x=5x+3x - 2x = - 5x + 3x
5x25x+3x3=0\Rightarrow 5{x^2} - 5x + 3x - 3 = 0
Make factors

5x(x1)+3(x1)=0 (5x+3)(x1)=0  \Rightarrow 5x(x - 1) + 3(x - 1) = 0 \\\ \Rightarrow (5x + 3)(x - 1) = 0 \\\

Now we equate both factors to zero

5x+3=0 5x=3 x=35  5x + 3 = 0 \\\ 5x = - 3 \\\ x = \dfrac{{ - 3}}{5} \\\

Now we substitute sinθ=x\sin \theta = x
sinθ=35\sin \theta = \dfrac{{ - 3}}{5}
Then from equation 2cosθ+sinθ=12\cos \theta + \sin \theta = 1
2cosθ+35=12\cos \theta + \dfrac{{ - 3}}{5} = 1
Shift all constants to one side
2cosθ=1+352\cos \theta = 1 + \dfrac{3}{5}
Take LCM on RHS of the equation

2cosθ=5+35 2cosθ=85  2\cos \theta = \dfrac{{5 + 3}}{5} \\\ 2\cos \theta = \dfrac{8}{5} \\\

Divide both sides by 2
cosθ=85×12\cos \theta = \dfrac{8}{5} \times \dfrac{1}{2}
cosθ=45\cos \theta = \dfrac{4}{5}
And from the second factor

x1=0 x=1  x - 1 = 0 \\\ x = 1 \\\

Now we substitute sinθ=x\sin \theta = x

sinθ=1 θ=π2  \sin \theta = 1 \\\ \theta = \dfrac{\pi }{2} \\\

Which is not acceptable as the condition in the question is (θπ2)(\theta \ne \dfrac{\pi }{2})
So, the value of sinθ=35\sin \theta = \dfrac{{ - 3}}{5} and cosθ=45\cos \theta = \dfrac{4}{5}
Substitute the values in 7cosθ+6sinθ7\cos \theta + 6\sin \theta

7cosθ+6sinθ=7×45+6×35 7cosθ+6sinθ=285+185  \Rightarrow 7\cos \theta + 6\sin \theta = 7 \times \dfrac{4}{5} + 6 \times \dfrac{{ - 3}}{5} \\\ \Rightarrow 7\cos \theta + 6\sin \theta = \dfrac{{28}}{5} + \dfrac{{ - 18}}{5} \\\

Taking LCM on right hand side of the equation

7cosθ+6sinθ=28185 7cosθ+6sinθ=105  \Rightarrow 7\cos \theta + 6\sin \theta = \dfrac{{28 - 18}}{5} \\\ \Rightarrow 7\cos \theta + 6\sin \theta = \dfrac{{10}}{5} \\\

Cancel out same factors from both numerator and denominator
7cosθ+6sinθ=2\Rightarrow 7\cos \theta + 6\sin \theta = 2

So, option D is correct.

Note: Students make mistake of finding the value of θ\theta by taking inverse on both sides after we have obtained values of sinθ,cosθ\sin \theta ,\cos \theta which is not required in the solution as RHS has direct substitution of values of sinθ,cosθ\sin \theta ,\cos \theta .
Students many times make mistake of directly writing one trigonometric function in term of other, like if 2cosθ+sinθ=12\cos \theta + \sin \theta = 1 then, they will transform it into sinθ=12cosθ\sin \theta = 1 - 2\cos \theta and then they will substitute values in 7cosθ+6sinθ7\cos \theta + 6\sin \theta to get the answer which is wrong.