Solveeit Logo

Question

Question: If 2 cos q = x + \(\frac{1}{x}\)and 2 cos f = y +\(\frac{1}{y}\), then \(\frac{x}{y}\)+ \(\frac{y}{x...

If 2 cos q = x + 1x\frac{1}{x}and 2 cos f = y +1y\frac{1}{y}, then xy\frac{x}{y}+ yx\frac{y}{x}equals

A

2 cos (q –f)

B

2 cos (q + f)

C

2 sin (q – f)

D

2 sin (q + f)

Answer

2 cos (q –f)

Explanation

Solution

Sol. 2 cos q = x + 1x\frac{1}{x}

Ž x2 –(2 cos q) x + 1 = 0

Ž x = cos q ± i sin q

Similarly, y = cos f ± i sin f

taking x = cos q + i sin q and y = cos f + i sin f

xy\frac{x}{y}+yx\frac{y}{x}= cosθ+isinθcosφ+isinφ\frac{\cos\theta + i\sin\theta}{\cos\varphi + i\sin\varphi}+ cosφ+isinφcosθ+isinθ\frac{\cos\varphi + i\sin\varphi}{\cos\theta + i\sin\theta}

= {cos (q – f) + i sin (q – f)} + cos (f – q) + i sin (f – q)

= cos (q – f) + i sin(q – f) + cos (q – f) – i sin (q – f)

= 2 cos (q – f)