Solveeit Logo

Question

Question: If \(2 - {\cos ^2}\theta = 3\sin \theta \cos \theta \ne \cos \theta \) than find the value of \(\cot...

If 2cos2θ=3sinθcosθcosθ2 - {\cos ^2}\theta = 3\sin \theta \cos \theta \ne \cos \theta than find the value of cotθ\cot \theta
A. 12\dfrac{1}{2}
B. 00
C. 1 - 1
D. 22

Explanation

Solution

Here we will proceed by converting the given equation in terms of tan\tan by using the formulae of trigonometric ratios and trigonometric identities. Then solve the obtained equation by grouping the common terms. Further convert tan to cot to get the required answer.

Complete step-by-step answer:
The equation is 2cos2θ=3sinθcosθ2 - {\cos ^2}\theta = 3\sin \theta \cos \theta .
Dividing both sides with cos2θ{\cos ^2}\theta , we have

2cos2θcos2θ=3sinθcosθcos2θ 2cos2θcos2θcos2θ=3sinθcosθ 2sec2θ1=3tanθ [1cos2θ=sec2θ,sinθcosθ=tanθ]  \Rightarrow \dfrac{{2 - {{\cos }^2}\theta }}{{{{\cos }^2}\theta }} = \dfrac{{3\sin \theta \cos \theta }}{{{{\cos }^2}\theta }} \\\ \Rightarrow \dfrac{2}{{{{\cos }^2}\theta }} - \dfrac{{{{\cos }^2}\theta }}{{{{\cos }^2}\theta }} = \dfrac{{3\sin \theta }}{{\cos \theta }} \\\ \Rightarrow 2{\sec ^2}\theta - 1 = 3\tan \theta {\text{ }}\left[ {\because \dfrac{1}{{{{\cos }^2}\theta }} = {{\sec }^2}\theta ,\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta } \right] \\\

We know that sec2θ=tan2θ+1{\sec ^2}\theta = {\tan ^2}\theta + 1. By substituting this formula, we have

2(tan2θ+1)1=3tanθ 2tan2θ+21=3tanθ 2tan2θ3tanθ+1=0  \Rightarrow 2\left( {{{\tan }^2}\theta + 1} \right) - 1 = 3\tan \theta \\\ \Rightarrow 2{\tan ^2}\theta + 2 - 1 = 3\tan \theta \\\ \Rightarrow 2{\tan ^2}\theta - 3\tan \theta + 1 = 0 \\\

Splitting and grouping the common terms, we have

2tan2θ2tanθtanθ+1=0 2tanθ(tanθ1)1(tanθ1)=0 (2tanθ1)(tanθ1)=0 tanθ=12,1  \Rightarrow 2{\tan ^2}\theta - 2\tan \theta - \tan \theta + 1 = 0 \\\ \Rightarrow 2\tan \theta \left( {\tan \theta - 1} \right) - 1\left( {\tan \theta - 1} \right) = 0 \\\ \Rightarrow \left( {2\tan \theta - 1} \right)\left( {\tan \theta - 1} \right) = 0 \\\ \therefore \tan \theta = \dfrac{1}{2},1 \\\

We know that cotθ=1tanθ\cot \theta = \dfrac{1}{{\tan \theta }}. So, we have

cotθ=1tanθ=112=2  cotθ=1tanθ=11=1  \therefore \cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{1}{{\dfrac{1}{2}}} = 2 \\\ {\text{ }}\cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{1}{1} = 1 \\\

Therefore, the values of cotθ\cot \theta are 1 and 2.
Thus, the correct answer is D. 2

So, the correct answer is “Option D”.

Note: Here we have used the formulae of trigonometric ratios of sinθcosθ=tanθ,1cos2θ=sec2θ,1tanθ=cotθ\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta ,\dfrac{1}{{{{\cos }^2}\theta }} = {\sec ^2}\theta ,\dfrac{1}{{\tan \theta }} = \cot \theta . And the trigonometric identity sec2θ=1+tan2θ{\sec ^2}\theta = 1 + {\tan ^2}\theta to solve the given problem.