Question
Mathematics Question on Complex Numbers and Quadratic Equations
If 2α=−1−i3 and 2β=−1+i3, then 5α4+5β4+7α−1β−1 is equal to
A
−1
B
−2
C
2
D
1
Answer
2
Explanation
Solution
Given that, 2α=−1−i3 and 2β=−1+i3 ∴α+β=−1 and αβ=1 Now, 5α4+5β4+αβ7 =5\left[\left\\{\left(\alpha+\beta\right)^{2}-2\alpha\beta^{3}-2\left(\alpha\beta\right)\right\\}^{2}\right]+\frac{7}{\alpha\beta} = 5\left[\left\\{\left(-1\right)^{2}-2\times1\right\\}^{2}-2\left(1\right)^{2}\right]+\frac{7}{1} =5(1−2)+7=2.