Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If (2,7,3)(2, 7, 3) is one end of a diameter of the sphere x2+y2+z26x12y2z+20=0x^2 + y^2 + z^2 - 6\,x -12\,y -2\,z + 20 = 0, then the coordinates of the other end of the diameter are

A

(2,5,1)(-2, 5, -1)

B

(4,5,1)(4, 5, 1)

C

(2,5,1)(2, -5, 1)

D

(4,5,1)(4, 5, -1)

Answer

(4,5,1)(4, 5, -1)

Explanation

Solution

Given sphere is
x2+y2+z26x12y2z+20=0x^{2}+y^{2}+z^{2}-6 \,x-12\, y-2 z+20=0
Centre (3,6,1)\equiv(3,6,1)
Here, one end of diameter is (2,7,3)(2,7,3).
Let the other end of the diameter be (x,y,z)(x, y, z)
Centre of the sphere will be the mid-point of the ends of diameter.
So, (3,6,1)=(2+x2,7+y2,3+z2)(3,6,1)=\left(\frac{2+x}{2}, \frac{7+y}{2}, \frac{3+z}{2}\right)
2+x=6\Rightarrow 2+x=6
x=4\Rightarrow x=4
7+y=12\Rightarrow 7+y=12
y=5\Rightarrow y=5
and 3+z=23+z=2
z=1\Rightarrow z=-1
Therefore, (x,y,z)(4,5,1)(x, y, z) \equiv(4,5,-1)