Solveeit Logo

Question

Question: If \((2, - 1,2)\) and \((K,3,5)\)are the triads of direction ratios of two lines and the angle betwe...

If (2,1,2)(2, - 1,2) and (K,3,5)(K,3,5)are the triads of direction ratios of two lines and the angle between them is 45{45^ \circ }, then a value of KK is
A. 22
B. 33
C. 44
D. 66

Explanation

Solution

Apply the formula to find angle between two points:
Angle between two points: If θ\theta is the angle between two lines whose direction ratios are proportional to a1, b1, c1{a_1},{\text{ }}{b_1},{\text{ }}{c_1} and a2, b2, c2{a_2},{\text{ }}{b_2},{\text{ }}{c_2} respectively, then the angle θ\theta between them is given by,
cosθ=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22\cos \theta = \dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} \sqrt {a_2^2 + b_2^2 + c_2^2} }}
Here, substitutea1=2{a_1} = 2,b1=1{b_1} = - 1, c1=2{c_1} = 2 , and a2=K{a_2} = K,b2=3{b_2} = 3,c2=5{c_2} = 5and angle θ=45\theta = {45^ \circ } and solve for KK.
Here, cos45=12\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}.

Complete step-by-step answer:
If the given triads (2,1,2)(2, - 1,2) and (K,3,5)(K,3,5)are the directions. The angle between two lines is 45{45^ \circ }.
Angle between two points: If θ\theta is the angle between two lines whose direction ratios are proportional to a1, b1, c1{a_1},{\text{ }}{b_1},{\text{ }}{c_1} and a2, b2, c2{a_2},{\text{ }}{b_2},{\text{ }}{c_2}respectively, then the angle θ\theta between them is given by,
cosθ=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22(1)\cos \theta = \dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} \sqrt {a_2^2 + b_2^2 + c_2^2} }} \ldots \ldots (1)
Substitutea1=2{a_1} = 2,b1=1{b_1} = - 1, c1=2{c_1} = 2 , and a2=K{a_2} = K,b2=3{b_2} = 3,c2=5{c_2} = 5and angle θ=45\theta = {45^ \circ } into the equation (1)(1).
cos45=2×K+(1)×3+2×522+(1)2+22K2+32+52\cos {45^ \circ } = \dfrac{{2 \times K + ( - 1) \times 3 + 2 \times 5}}{{\sqrt {{2^2} + {{( - 1)}^2} + {2^2}} \sqrt {{K^2} + {3^2} + {5^2}} }}
Simplify the equation we get,
cos45=2K3+104+1+4K2+9+25\cos {45^ \circ } = \dfrac{{2K - 3 + 10}}{{\sqrt {4 + 1 + 4} \sqrt {{K^2} + 9 + 25} }}
We know trigonometric valuecos45=12\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}, substitute into the equation and simplify,
12=2K+79K2+34\dfrac{1}{{\sqrt 2 }} = \dfrac{{2K + 7}}{{\sqrt 9 \sqrt {{K^2} + 34} }}
12=2K+73K2+34\Rightarrow \dfrac{1}{{\sqrt 2 }} = \dfrac{{2K + 7}}{{3\sqrt {{K^2} + 34} }}
Squaring both the sides of the equation,
12=(2K+7)29(K2+34)\Rightarrow \dfrac{1}{2} = \dfrac{{{{(2K + 7)}^2}}}{{9({K^2} + 34)}}
9(K2+34)=2(2K+7)2\Rightarrow 9({K^2} + 34) = 2{(2K + 7)^2}
9K2+306=2(4K2+28K+49)\Rightarrow 9{K^2} + 306 = 2(4{K^2} + 28K + 49)
Simplify for KK,
9K28K256K+30698=0\Rightarrow 9{K^2} - 8{K^2} - 56K + 306 - 98 = 0
K256K+208=0\Rightarrow {K^2} - 56K + 208 = 0
Find the factors of quadratic equation,
(K52)(K4)=0\Rightarrow (K - 52)(K - 4) = 0
The value of KK is 4,524,52 .

The correct Answer: C. 44

Note:
We can solve the quadratic equation by the following formula;
If ax2+bx+c=0a{x^2} + bx + c = 0 is the quadratic equation, then x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}},
where aa and bb are the coefficients of x2{x^2}, xx and c is the constant.