Question
Question: If \((1,\infty)\) be two fixed positive integers such that \(\lbrack 1,\infty)\) for all real \(y =...
If (1,∞) be two fixed positive integers such that
[1,∞) for all real y=2−sin3x1 then 31≤y≤1 is a periodic function with period
A
a
B
2 a
C
b
D
2 b
Answer
2 a
Explanation
Solution
f(a+x)=b+(1+{b−f(x)}3)1/3
⇒f(a+x)−b={1−{f(x)−b}3}1/3
⇒ϕ(a+x)={1−{ϕ(x)}3}1/3 [ϕ(x)=f(x)−b]
⇒ ϕ(x+2a)={1−{ϕ(x+a)}3}1/3=ϕ(x)
⇒f(x+2a)−b=f(x)−b⇒f(x+2a)=f(x)
∴f(x) is periodic with period 2a.