Solveeit Logo

Question

Question: If \[{}^{18}{C_{15}} + 2\left( {{}^{18}{C_{16}}} \right) + {}^{17}{C_{16}} + 1 = {}^n{C_3}\], then \...

If 18C15+2(18C16)+17C16+1=nC3{}^{18}{C_{15}} + 2\left( {{}^{18}{C_{16}}} \right) + {}^{17}{C_{16}} + 1 = {}^n{C_3}, then nn is equal to
A. 19
B. 20
C. 18
D. 24

Explanation

Solution

In this question, we will proceed by grouping the terms common wherever we can use the formula in combinations to simply the value for the further steps. Use the same method until it gets simplified to the required value.

Complete step-by-step answer :
Given that 18C15+2(18C16)+17C16+1=nC3{}^{18}{C_{15}} + 2\left( {{}^{18}{C_{16}}} \right) + {}^{17}{C_{16}} + 1 = {}^n{C_3}
Which can be rewrite as
18C15+18C16+18C16+17C16+1=nC3\Rightarrow {}^{18}{C_{15}} + {}^{18}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3}
By using the formula, nCr+1+nCr=n+1Cr+1{}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}} we get

(18C15+18C16)+18C16+17C16+1=nC3 19C16+18C16+17C16+1=nC3 [nCr+1+nCr=n+1Cr+1]  \Rightarrow \left( {{}^{18}{C_{15}} + {}^{18}{C_{16}}} \right) + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3} \\\ \Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\\

We know that 17C17=1{}^{17}{C_{17}} = 1. So, replacing 1 by 17C17{}^{17}{C_{17}} we get
19C16+18C16+17C16+17C17=nC3\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + {}^{17}{C_{17}} = {}^n{C_3}
Again, using the formula nCr+nCr+1=n+1Cr+1{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r+1}} we get

19C16+18C16+(17C16+17C17)=nC3 19C16+18C16+18C17=nC3 [nCr+nCr+1=n+1Cr+!]  \Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + \left( {{}^{17}{C_{16}} + {}^{17}{C_{17}}} \right) = {}^n{C_3} \\\ \Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{18}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r+!}}} \right] \\\

By using the formula, nCr+1+nCr=n+1Cr+1{}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}} we get

19C16+(18C16+18C17)=nC3 19C16+19C17=nC3 [nCr+1+nCr=n+1Cr+1] 20C17=nC3 [nCr+1+nCr=n+1Cr+1] 20C3=nC3 [nCr=nCnr]  \Rightarrow {}^{19}{C_{16}} + \left( {{}^{18}{C_{16}} + {}^{18}{C_{17}}} \right) = {}^n{C_3} \\\ \Rightarrow {}^{19}{C_{16}} + {}^{19}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\\ \Rightarrow {}^{20}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\\ \Rightarrow {}^{20}{C_3} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_r} = {}^n{C_{n - r}}} \right] \\\

We know that if nCr=sCr{}^n{C_r} = {}^s{C_r} then n=sn = s. So, we have
n=20\therefore n = 20
Thus, the correct option is B. 20

Note : Here we have used the formula of combinations as follows:
1. nCr+nCr+1=n+1Cr{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_r}
2. If nCr=sCr{}^n{C_r} = {}^s{C_r} then n=sn = s
3. nCr=nCnr{}^n{C_r} = {}^n{C_{n - r}}