Solveeit Logo

Question

Question: If \(16\cot x = 12\) find the value of \(\left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \righ...

If 16cotx=1216\cot x = 12 find the value of [sinx+cosxsinxcosx]\left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right]
A.7
B.73\dfrac{7}{3}
C.72\dfrac{7}{2}
D.None of these

Explanation

Solution

For the given question we have to divide denominator and numerator with sinx\sin x. It is known that cosxsinx=cotx\dfrac{{\cos x}}{{\sin x}} = \cot x. Then it is given that 16cotx=1216\cot x = 12, we will substitute the value of cotx\cot x and after simplifying we the value of the given question.

Complete step-by-step answer:
Given 16cotx=1216\cot x = 12simplifying, we get,
cotx=34\Rightarrow \cot x = \dfrac{3}{4} ……………. (i)\left( i \right)
Now according to question
[sinx+cosxsinxcosx]\left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right]
Dividing denominator and numerator with sinx\sin x,we get,
[1+cosxsinx1cosxsinx]\Rightarrow \left[ {\dfrac{{1 + \dfrac{{\cos x}}{{\sin x}}}}{{1 - \dfrac{{\cos x}}{{\sin x}}}}} \right]
Substituting cosxsinx=cotx\dfrac{{\cos x}}{{\sin x}} = \cot x, we get,
[1+cotx1cotx]\Rightarrow \left[ {\dfrac{{1 + \cot x}}{{1 - \cot x}}} \right]
Now, substituting (i)\left( i \right)and on simplifying we get,
[1+34134]\Rightarrow \left[ {\dfrac{{1 + \dfrac{3}{4}}}{{1 - \dfrac{3}{4}}}} \right]
=7= 7
[sinx+cosxsinxcosx]=7\therefore \left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right] = 7
Answer is option (A)

Note: Alternative method
[sinx+cosxsinxcosx]\left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right]
Dividing denominator and numerator withcosx\cos xwe get
[tanx+1tanx1]\Rightarrow \left[ {\dfrac{{\tan x + 1}}{{\tan x - 1}}} \right]
We know that cotx=34\cot x = \dfrac{3}{4}and tanx=1cotx\tan x = \dfrac{1}{{\cot x}}, we get,
tanx=43\therefore \tan x = \dfrac{4}{3}………….. (ii)
Now substituting (ii) and simplifying we get
[43+1431]=7\Rightarrow \left[ {\dfrac{{\dfrac{4}{3} + 1}}{{\dfrac{4}{3} - 1}}} \right] = 7
[sinx+cosxsinxcosx]=7\therefore \left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right] = 7