Question
Question: If $15\sin^4\alpha + 10\cos^4\alpha = 6$, for some $\alpha \in R$, then the value of $27\sec^6\alpha...
If 15sin4α+10cos4α=6, for some α∈R, then the value of 27sec6α+8cosec6α is equal to :

A
250
B
125
C
500
D
375
Answer
250
Explanation
Solution
Let x=sin2α and y=cos2α. Given 15sin4α+10cos4α=6, we have 15x2+10y2=6. Since x+y=1, substitute y=1−x: 15x2+10(1−x)2=6 15x2+10(1−2x+x2)=6 15x2+10−20x+10x2=6 25x2−20x+4=0 This is a perfect square: (5x−2)2=0, so x=2/5. Thus, sin2α=2/5. Then, cos2α=1−sin2α=1−2/5=3/5.
We need to find 27sec6α+8cosec6α. sec2α=cos2α1=3/51=35 cosec2α=sin2α1=2/51=25
The expression becomes: 27(sec2α)3+8(cosec2α)3 =27(35)3+8(25)3 =27×27125+8×8125 =125+125=250.