Solveeit Logo

Question

Question: If $15\sin^4\alpha + 10\cos^4\alpha = 6$, for some $\alpha \in R$, then the value of $27\sec^6\alpha...

If 15sin4α+10cos4α=615\sin^4\alpha + 10\cos^4\alpha = 6, for some αR\alpha \in R, then the value of 27sec6α+8cosec6α27\sec^6\alpha + 8\operatorname{cosec}^6\alpha is equal to :

A

250

B

125

C

500

D

375

Answer

250

Explanation

Solution

Let x=sin2αx = \sin^2\alpha and y=cos2αy = \cos^2\alpha. Given 15sin4α+10cos4α=615\sin^4\alpha + 10\cos^4\alpha = 6, we have 15x2+10y2=615x^2 + 10y^2 = 6. Since x+y=1x+y=1, substitute y=1xy=1-x: 15x2+10(1x)2=615x^2 + 10(1-x)^2 = 6 15x2+10(12x+x2)=615x^2 + 10(1 - 2x + x^2) = 6 15x2+1020x+10x2=615x^2 + 10 - 20x + 10x^2 = 6 25x220x+4=025x^2 - 20x + 4 = 0 This is a perfect square: (5x2)2=0(5x - 2)^2 = 0, so x=2/5x = 2/5. Thus, sin2α=2/5\sin^2\alpha = 2/5. Then, cos2α=1sin2α=12/5=3/5\cos^2\alpha = 1 - \sin^2\alpha = 1 - 2/5 = 3/5.

We need to find 27sec6α+8cosec6α27\sec^6\alpha + 8\operatorname{cosec}^6\alpha. sec2α=1cos2α=13/5=53\sec^2\alpha = \frac{1}{\cos^2\alpha} = \frac{1}{3/5} = \frac{5}{3} cosec2α=1sin2α=12/5=52\operatorname{cosec}^2\alpha = \frac{1}{\sin^2\alpha} = \frac{1}{2/5} = \frac{5}{2}

The expression becomes: 27(sec2α)3+8(cosec2α)327(\sec^2\alpha)^3 + 8(\operatorname{cosec}^2\alpha)^3 =27(53)3+8(52)3= 27\left(\frac{5}{3}\right)^3 + 8\left(\frac{5}{2}\right)^3 =27×12527+8×1258= 27 \times \frac{125}{27} + 8 \times \frac{125}{8} =125+125=250= 125 + 125 = 250.