Solveeit Logo

Question

Question: If \( 15{\tan ^2}\theta + 4{\sec ^2}\theta = 23 \) then \( {\tan ^2}\theta = \) …… \( A.{\text{ }...

If 15tan2θ+4sec2θ=2315{\tan ^2}\theta + 4{\sec ^2}\theta = 23 then tan2θ={\tan ^2}\theta = ……
A. 2715A.{\text{ }}\dfrac{{27}}{{15}}
B. 45B.{\text{ 45}}
C. 1911C.{\text{ }}\dfrac{{19}}{{11}}
D. 1D.{\text{ 1}}

Explanation

Solution

Hint: First, we should convert sec2θ{\sec ^2}\theta in term of tan2θ{\tan ^2}\theta (sec2θ=1+tan2θ)\left( {{{\sec }^2}\theta = 1 + {{\tan }^2}\theta } \right) because we want to get the value of tan2θ{\tan ^2}\theta then simply solve the equation and get the value of tan2θ{\tan ^2}\theta

Complete step-by-step answer:
15tan2θ+4sec2θ=2315{\tan ^2}\theta + 4{\sec ^2}\theta = 23
Now, using the formula sec2θ{\sec ^2}\theta = (1+ tan2θ{\tan ^2}\theta ), we get
15tan2θ+4(1+tan2θ)=2315{\tan ^2}\theta + 4\left( {1 + {{\tan }^2}\theta } \right) = 23
On simplifying this, we have
15tan2θ+4+4tan2θ=2315{\tan ^2}\theta + 4 + 4{\tan ^2}\theta = 23
Now, we will take tan2θ{\tan ^2}\theta common, we get
(15+4)tan2θ+4=23\left( {15 + 4} \right){\tan ^2}\theta +4 = 23
Subtracting 4 on both the side,
19tan2θ+44=23419{\tan ^2}\theta +4-4 = 23-4
we get,
19tan2θ=1919{\tan ^2}\theta = 19

After transposing we get
tan2θ=1919{\tan ^2}\theta = \dfrac{{19}}{{19}}
tan2θ=1{\tan ^2}\theta = 1
Value of tan2θ{\tan ^2}\theta is 11
So, The correct option is DD .

Note- Some basic trigonometric equations should be in our mind which are useful for solving in this type of question
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1
cosec2θcot2θ=1\cos e{c^2}\theta - {\cot ^2}\theta = 1
tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}