Solveeit Logo

Question

Question: If \[11{z^{10}} + 10i{z^9} + 10iz - 11 = 0\], then what will be the possible value of \[\left| z \ri...

If 11z10+10iz9+10iz11=011{z^{10}} + 10i{z^9} + 10iz - 11 = 0, then what will be the possible value of z\left| z \right|.

Explanation

Solution

The given function is a polynomial of degree 1010 and so it is analytic and the equation has 1010 roots. One can solve this equation by rearranging the equation by keeping the higher order on one side. Then we can prove by showing the contradiction z<1\left| z \right| < 1or z>1\left| z \right| > 1. Finally we will get the required result.

Complete step-by-step solution:
Consider the given equation 11z10+10iz9+10iz11=011{z^{10}} + 10i{z^9} + 10iz - 11 = 0.
Rearranging the equation by keeping the higher order on one side and the remaining on the other side.
z9(11z+10i)=1110iz{z^9}\left( {11z + 10i} \right) = 11 - 10iz
Taking the term 11z+10i11z + 10i to other side,
z9=1110iz11z+10i(1)\Rightarrow {z^9} = \dfrac{{11 - 10iz}}{{11z + 10i}} - - - - \left( 1 \right)
Let zz be a complex number that satisfies the equation 11z10+10iz9+10iz11=011{z^{10}} + 10i{z^9} + 10iz - 11 = 0, z=x+iyz = x + iy, we can find the roots by considering two cases.
Case 1:
For z<1\left| z \right| < 1,
x+iy=(x+iy)(xiy)\Rightarrow \left| {x + iy} \right| = \sqrt {\left( {x + iy} \right)\left( {x - iy} \right)}
x2+y2<1\Rightarrow \sqrt {{x^2} + {y^2}} < 1
Taking modulus on both sides of the equation (1), we get
z9=1110iz11z+10i \left| {{z^9}} \right| = \left| {\dfrac{{11 - 10iz}}{{11z + 10i}}{\text{ }}} \right|
Substitute the value of z,
z9=1110i(x+iy)11(x+iy)+10i\left| {{z^9}} \right| = \left| {\dfrac{{11 - 10i\left( {x + iy} \right)}}{{11\left( {x + iy} \right) + 10i}}} \right|
Expanding further we get,
z9=1110ix+10y11x+11iy+10i(2)\left| {{z^9}} \right| = \left| {\dfrac{{11 - 10ix + 10y}}{{11x + 11iy + 10i}}} \right| - - - - \left( 2 \right)
We know that a+ib=(a+ib)(aib)=a2+b2\left| {a + ib} \right| = \sqrt {\left( {a + ib} \right)\left( {a - ib} \right)} = \sqrt {{a^2} + {b^2}}
Consider the numerator 1110ix+10y\left| {11 - 10ix + 10y} \right|,
Let a=11+10y,b=10xa = 11 + 10y,b = - 10x
1110ix+10y=(10y+11)2+(10x)2\left| {11 - 10ix + 10y} \right| = \sqrt {{{\left( {10y + 11} \right)}^2} + {{\left( { - 10x} \right)}^2}}
(10y+11)2+100x2(3)\Rightarrow \sqrt {{{\left( {10y + 11} \right)}^2} + 100{x^2}} - - - - \left( 3 \right)
Consider the denominator 11x+11iy+10i\left| {11x + 11iy + 10i} \right|,
Let a=11x,b=11y+10a = 11x,b = 11y + 10
11x+11iy+10i=(11x)2+(11y+10)2\left| {11x + 11iy + 10i} \right| = \sqrt {{{\left( {11x} \right)}^2} + {{\left( {11y + 10} \right)}^2}}
(11y+10)2+121x2(4)\Rightarrow \sqrt {{{\left( {11y + 10} \right)}^2} + 121{x^2}} - - - - \left( 4 \right)
Substituting equation (3) and (4) in (2),
z9=(10y+11)2+100x2 (11y+10)2+121x2\left| {{z^9}} \right| = \dfrac{{\sqrt {{{\left( {10y + 11} \right)}^2} + 100{x^2}} {\text{ }}}}{{\sqrt {{{\left( {11y + 10} \right)}^2} + 121{x^2}} }}
Expanding sum of squares on both numerator and denominator, we get
z9=100y2+220y+121+100x2 121y2+220y+100+121x2\Rightarrow \left| {{z^9}} \right| = \dfrac{{\sqrt {100{y^2} + 220y + 121 + 100{x^2}} {\text{ }}}}{{\sqrt {121{y^2} + 220y + 100 + 121{x^2}} }}
Hence,
z9=100(x2+y2)+220y+121 121(x2+y2)+220y+100\Rightarrow \left| {{z^9}} \right| = \dfrac{{\sqrt {100\left( {{x^2} + {y^2}} \right) + 220y + 121} {\text{ }}}}{{\sqrt {121\left( {{x^2} + {y^2}} \right) + 220y + 100} }}
x2+y2<1\because {x^2} + {y^2} < 1
Rearranging the terms we get,
100(x2+y2)+220y+121>121(x2+y2)+220y+100\therefore 100\left( {{x^2} + {y^2}} \right) + 220y + 121 > 121\left( {{x^2} + {y^2}} \right) + 220y + 100
Hence,
z9>1\Rightarrow \left| {{z^9}} \right| > 1
z>1\Rightarrow \left| z \right| > 1
This is a contradiction.
Case 2:
For z>1\left| z \right| > 1,
x+iy=(x+iy)(xiy)\Rightarrow \left| {x + iy} \right| = \sqrt {\left( {x + iy} \right)\left( {x - iy} \right)}
x2+y2>1\Rightarrow \sqrt {{x^2} + {y^2}} > 1
Taking modulus on both sides of the equation (1), we get
z9=1110iz11z+10i \left| {{z^9}} \right| = \left| {\dfrac{{11 - 10iz}}{{11z + 10i}}{\text{ }}} \right|
Substitute the value of z,
z9=1110i(x+iy)11(x+iy)+10i\left| {{z^9}} \right| = \left| {\dfrac{{11 - 10i\left( {x + iy} \right)}}{{11\left( {x + iy} \right) + 10i}}} \right|
Expanding further we get,
z9=1110ix+10y11x+11iy+10i(5)\left| {{z^9}} \right| = \left| {\dfrac{{11 - 10ix + 10y}}{{11x + 11iy + 10i}}} \right| - - - - \left( 5 \right)
We know that a+ib=(a+ib)(aib)=a2+b2\left| {a + ib} \right| = \sqrt {\left( {a + ib} \right)\left( {a - ib} \right)} = \sqrt {{a^2} + {b^2}}
Consider the numerator 1110ix+10y\left| {11 - 10ix + 10y} \right|,
Let a=11+10y,b=10xa = 11 + 10y,b = - 10x
1110ix+10y=(10y+11)2+(10x)2\left| {11 - 10ix + 10y} \right| = \sqrt {{{\left( {10y + 11} \right)}^2} + {{\left( { - 10x} \right)}^2}}
(10y+11)2+100x2(6)\Rightarrow \sqrt {{{\left( {10y + 11} \right)}^2} + 100{x^2}} - - - - \left( 6 \right)
Consider the denominator 11x+11iy+10i\left| {11x + 11iy + 10i} \right|,
Let a=11x,b=11y+10a = 11x,b = 11y + 10
11x+11iy+10i=(11x)2+(11y+10)2\left| {11x + 11iy + 10i} \right| = \sqrt {{{\left( {11x} \right)}^2} + {{\left( {11y + 10} \right)}^2}}
(11y+10)2+121x2(7)\Rightarrow \sqrt {{{\left( {11y + 10} \right)}^2} + 121{x^2}} - - - - \left( 7 \right)
Substituting equation (6) and (7) in (5),
z9=(10y+11)2+100x2 (11y+10)2+121x2\left| {{z^9}} \right| = \dfrac{{\sqrt {{{\left( {10y + 11} \right)}^2} + 100{x^2}} {\text{ }}}}{{\sqrt {{{\left( {11y + 10} \right)}^2} + 121{x^2}} }}
Expanding sum of squares on both numerator and denominator, we get
z9=100y2+220y+121+100x2 121y2+220y+100+121x2\Rightarrow \left| {{z^9}} \right| = \dfrac{{\sqrt {100{y^2} + 220y + 121 + 100{x^2}} {\text{ }}}}{{\sqrt {121{y^2} + 220y + 100 + 121{x^2}} }}
Simplifying we get,
z9=100(x2+y2)+220y+121 121(x2+y2)+220y+100\Rightarrow \left| {{z^9}} \right| = \dfrac{{\sqrt {100\left( {{x^2} + {y^2}} \right) + 220y + 121} {\text{ }}}}{{\sqrt {121\left( {{x^2} + {y^2}} \right) + 220y + 100} }}
x2+y2>1\because {x^2} + {y^2} > 1
Rearranging the terms we get,
100(x2+y2)+220y+121>121(x2+y2)+220y+100\therefore 100\left( {{x^2} + {y^2}} \right) + 220y + 121 > 121\left( {{x^2} + {y^2}} \right) + 220y + 100
Hence,
z9<1\Rightarrow \left| {{z^9}} \right| < 1
z<1\Rightarrow \left| z \right| < 1
This is a contradiction.
\therefore z=1\left| z \right| = 1, which means all the roots lie on the circle.

Note: In logic and mathematics, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Proof by contradiction is also known as indirect proof, proof by assuming the opposite.