Solveeit Logo

Question

Question: If \(11\) g of oxalic acid are dissolved in \(500\) mL of solution (density= \(1.1\)\[g{\text{ }}m{L...

If 1111 g of oxalic acid are dissolved in 500500 mL of solution (density= 1.1$$$g{\text{ }}m{L^{ - 1}}$$ ) what is the mass % of oxalic acid in solution? A.1% B. B.2% C. C.3% D. D.4% $

Explanation

Solution

We can solve this question using the formula of mass% of solute which is given as-
\Rightarrow Mass% of the solute=Mass of soluteMass of solution×100\dfrac{{{\text{Mass of solute}}}}{{{\text{Mass of solution}}}} \times {\text{100}}
Here the solute is oxalic acid as it is dissolved in solution.
In the question, we are given the volume and density of the solution so we can find the mass of the solution by multiplying the volume and density of the solution. Then put all the values in the formula and solve it to get the answer.

Complete step by step answer:
Given, mass of oxalic acid=1111 g
Density of the solution=1.1$$$g{\text{ }}m{L^{ - 1}}$$ Volume of solution=500mLWehavetofindthemassWeknowthatmassmL We have to find the mass % of oxalic acid in solution. We know that mass% of solute is given by the formula- \Rightarrow Mass Mass% of the solute=\dfrac{{{\text{Mass of solute}}}}{{{\text{Mass of solution}}}} \times {\text{100}}Onputtingthegivenvalues,weget On putting the given values, we get- \Rightarrow Mass Mass% of the solute=\dfrac{{{\text{11}}}}{{{\text{Mass of solution}}}} \times {\text{100}}(i)Sincewearegiventhevolumeanddensityofsolutionwecanfindthemassofthesolutionusingformula-- (i) Since we are given the volume and density of solution we can find the mass of the solution using formula- \Rightarrow Massofthesolution= Mass of the solution=d \times VwheredisthedensityofthesolutionandVisthevolumeofthesolution.Onputtingthegiven,values,wegetwhere d is the density of the solution and V is the volume of the solution. On putting the given, values, we get- \Rightarrow Massofthesolution= Mass of the solution=500 \times 1.1gOnsolving,wegetg On solving, we get- \Rightarrow Massofthesolution= Mass of the solution=50 \times 11g(ii)Onputtingthevalueofeq.(ii)ineq.(i),wegetg-- (ii) On putting the value of eq. (ii) in eq. (i), we get- \Rightarrow Mass Mass% of the solute=\dfrac{{{\text{11}} \times {\text{100}}}}{{{\text{11}} \times {\text{50}}}}Onsolvingtheaboveequation,weget On solving the above equation, we get- \Rightarrow Mass Mass% of the solute=\dfrac{{{\text{100}}}}{{50}}Ondividingthenumeratorbydenominator,weget On dividing the numerator by denominator, we get- \Rightarrow Mass Mass% of the solute=2% $

Hence the correct answer is option B.

Note:
Mass % is also written as w/w%. The concentration of solute can also be calculated in terms of weight by volume and volume by volume percentage in a similar way as we calculated the mass%.
The (weight by volume) w/v% is calculated as-
\Rightarrow w/v%=Mass of solute in gmMass of solution in ml×100\dfrac{{{\text{Mass of solute in gm}}}}{{{\text{Mass of solution in ml}}}} \times 100
And v/v% is calculated using formula-
\Rightarrow v/v%=Volume of solute in mlVolume of solution×100\dfrac{{{\text{Volume of solute in ml}}}}{{{\text{Volume of solution}}}} \times 100