Question
Question: If $10^{\log a (\log b (\log c x))} = 1$ and $10^{(\log b (\log c (\log a x)))} = 1$ then, a is equa...
If 10loga(logb(logcx))=1 and 10(logb(logc(logax)))=1 then, a is equal to

A
ba
B
cba
C
ab
D
ccb
Answer
ccb
Explanation
Solution
Here's how to solve the problem:
-
Given Equations:
10loga(logb(logcx))=1and10logb(logc(logax))=1. -
Step 1: Use the property 10y=1⟹y=0.
-
From the first equation:
loga(logb(logcx))=0⟹logb(logcx)=1(since loga1=0). -
From the second equation:
logb(logc(logax))=0⟹logc(logax)=1.
-
-
Step 2: Convert logarithmic equations to exponential form.
-
For logb(logcx)=1:
logcx=b⟹x=cb. -
For logc(logax)=1:
logax=c⟹x=ac.
-
-
Step 3: Equate the two expressions for x:
ac=cb. -
Step 4: Solve for a:
Taking the cth root,
a=(cb)c1=ccb.Thus, the correct answer is ccb.