Solveeit Logo

Question

Question: If $^{100}C_0 + ^{101}C_1 + ^{102}C_2 + ^{103}C_3 + \dots + ^{200}C_{100} = ^nC_r$, then:...

If 100C0+101C1+102C2+103C3++200C100=nCr^{100}C_0 + ^{101}C_1 + ^{102}C_2 + ^{103}C_3 + \dots + ^{200}C_{100} = ^nC_r, then:

A

Least value of n+rn+r is 301

B

Least value of n+rn+r is 302

C

nn is a prime number

D

rr can be a prime number

Answer

Least value of n+rn+r is 301, rr can be a prime number

Explanation

Solution

We use the identity:

k=0m(n+kk)=(n+m+1m)\sum_{k=0}^{m}\binom{n+k}{k}=\binom{n+m+1}{m}

Here, take n=100n=100 and m=100m=100:

100C0+101C1+102C2++200C100=(100+100+1100)=(201100).^{100}C_0 + ^{101}C_1 + ^{102}C_2 + \dots + ^{200}C_{100} = \binom{100+100+1}{100} = \binom{201}{100}.

Thus, we have n=201n = 201 and r=100r = 100, so:

n+r=201+100=301.n + r = 201 + 100 = 301.

Also, note that by the symmetry property of binomial coefficients, we have:

(201100)=(201201100)=(201101),\binom{201}{100} = \binom{201}{201-100} = \binom{201}{101},

and since 101101 is a prime number, we see that indeed rr can be a prime number.