Solveeit Logo

Question

Question: If \(10\) times the \({10^{th}}\)term of an A.P. is equal to \(15\) times the \({15^{th}}\) term, sh...

If 1010 times the 10th{10^{th}}term of an A.P. is equal to 1515 times the 15th{15^{th}} term, show that the 25th{25^{th}}term of A.P. is zero.

Explanation

Solution

Hint: Use general term of A.P. i.e, Tn=a+(n1)d{T_n} = a + (n - 1)d.
We, know that the nth{n^{th}}term of an A.P. is given as:
Tn=a+(n1)d{T_n} = a + (n - 1)d
10th\therefore {10^{th}}term of A.P. will be:
T10=a+(101)d T10=a+9d  \Rightarrow {T_{10}} = a + (10 - 1)d \\\ \Rightarrow {T_{10}} = a + 9d \\\
Similarly, 15th{15^{th}}term will be:
T15=a+(151)d, T15=a+14d  \Rightarrow {T_{15}} = a + (15 - 1)d, \\\ \Rightarrow {T_{15}} = a + 14d \\\
Now, according to question:
10T10=15T1510{T_{10}} = 15{T_{15}}
So, putting values of T10{T_{10}}and T15{T_{15}}from above, we’ll get:
10(a+9d)=15(a+14d) 10a+90d=15a+210d 5a+120d=0 a+24d=0  \Rightarrow 10(a + 9d) = 15(a + 14d) \\\ \Rightarrow 10a + 90d = 15a + 210d \\\ \Rightarrow 5a + 120d = 0 \\\ \Rightarrow a + 24d = 0 \\\
And 25th{25^{th}}term of A.P. will be:
T25=a+(251)d T25=a+24d  \Rightarrow {T_{25}} = a + (25 - 1)d \\\ \Rightarrow {T_{25}} = a + 24d \\\
Putting the value a+24d=0a + 24d = 0 from above, we get:
T25=0.\Rightarrow {T_{25}} = 0.
Hence the 25th{25^{th}}term of A.P. is zero.
Note: Since 25th{25^{th}} term of A.P. is zero, we can conclude that the sum of the first 49 terms of this A.P. is zero. In that case, the sum of the first 24 terms will be negative of the sum of the last 24 terms and 25th{25^{th}} term is already zero.