Solveeit Logo

Question

Mathematics Question on Sequence and series

If (10)9+2(11)1(10)8+3(11)2(10)7+............+10(11)9=k(10)9,(10)^9 +2(11)^1 (10)^8 + 3(11)^2 (10)^7 +............+10(11)^9 = k (10)^9, then k is equal to

A

12110\frac{121}{10}

B

441100\frac{441}{100}

C

100100

D

110110

Answer

100100

Explanation

Solution

109+2(11)(10)8+3(11)2(10)7++10(11)9=k(10)910^{9}+2 \cdot(11)(10)^{8}+3(11)^{2}(10)^{7}+\ldots+10(11)^{9}=k(10)^{9}
x=109+2(11)(10)8+3(11)2(10)7++10(11)9x=10^{9}+2 \cdot(11)(10)^{8}+3(11)^{2}(10)^{7}+\ldots+10(11)^{9}
1110x=11108+2(11)2(10)7++9(11)9+1110\frac{11}{10} x=11 \cdot 10^{8}+2 \cdot(11)^{2} \cdot(10)^{7}+\ldots+9(11)^{9}+11^{10}


x(11110)=109+11(10)8+112×(10)7++1191110x\left(1-\frac{11}{10}\right)=10^{9}+11(10)^{8}+11^{2} \times(10)^{7}+\ldots+11^{9}-11^{10}
x10=109((1110)10111101)1110\Rightarrow -\frac{x}{10}=10^{9}\left(\frac{\left(\frac{11}{10}\right)^{10}-1}{\frac{11}{10}-1}\right)-11^{10}
x10=(11101010)1110=1010\Rightarrow-\frac{x}{10}=\left(11^{10}-10^{10}\right)-11^{10}=-10^{10}
x=1011=k109\Rightarrow x=10^{11}=k \cdot 10^{9}
k=100\Rightarrow \,k=100