Solveeit Logo

Question

Question: If (1 + x)<sup>n</sup> = \(\sum_{r = 0}^{n}{nC_{r}x^{r}}\), then \(\sum_{r = m}^{n}{rC_{m}}\) is equ...

If (1 + x)n = r=0nnCrxr\sum_{r = 0}^{n}{nC_{r}x^{r}}, then r=mnrCm\sum_{r = m}^{n}{rC_{m}} is equal to

A

n + 1Cm

B

n + 1Cm + 1

C

n + 2Cm + 1

D

None of these

Answer

n + 1Cm + 1

Explanation

Solution

Cm is coefficient of xm in (1 + x)r

r=mnrCm\sum_{r = m}^{n}{rC_{m}}is coefficient of xm in

(1 + x)m + (1 + x)m + 1 + …… + (1 + x)n

i.e. coefficient of xm in (1+x)m{(1+x)n+1m1}x\frac{(1 + x)^{m}\left\{ (1 + x)^{n + 1 - m} - 1 \right\}}{x}

or coefficient of xm + 1 in (1 + x)n + 1 = n + 1Cm + 1