Question
Question: If (1 + x)<sup>n</sup> = \(\sum_{r = 0}^{n}C_{r}x^{r}\), then \(\left( 1 + \frac{C_{1}}{C_{0}} \righ...
If (1 + x)n = ∑r=0nCrxr, then (1+C0C1)(1+C1C2)........(1+Cn–1Cn)is equal to –
A
(n–1)!nn–1
B
(n–1)!(n+1)n–1
C
n!(n+1)n
D
n!(n+1)n+1
Answer
n!(n+1)n
Explanation
Solution
(1+1n)(1+n2n(n–1)).............(1+n1)
(1 + n) (2n+1)(3n+1)...........n(n+1)
= n!(n+1)n