Question
Question: If (1 + x)<sup>n</sup> = C<sub>0</sub> + C<sub>1</sub>x + C<sub>2</sub>x<sup>2</sup> + ……+ C<sub>n</...
If (1 + x)n = C0 + C1x + C2x2 + ……+ Cnxn then
1C0+ 2C1+ 3C2+…… + n+1Cn=
A
2n+1
B
n+12n+1−1
C
n+12n+1
D
None of these
Answer
n+12n+1−1
Explanation
Solution
Integrating :
1C0x + 2C1x2 …..+n+1Cnxn+1 =n+1(1+x)n+1−1
Put x = 1 Ž1C0+ 2C1+……+n+1Cn= n+12n+1−1