Question
Question: If (1 + x)<sup>n</sup> = C<sub>0</sub> + C<sub>1</sub>x + C<sub>2</sub>x<sup>2</sup> + … + C<sub>n</...
If (1 + x)n = C0 + C1x + C2x2 + … + Cnxn, then the value of ∑0≤r<∑s≤n(r+s) (Cr + Cs) is -
A
n2 · 2n
B
n · 2n
C
n2 · 22n
D
None of these
Answer
n2 · 2n
Explanation
Solution
We have, ∑r=0n∑s=0n(r+s)(Cr+Cs)
= ∑r=0n∑s=0n(rCr+rCs+sCr+sCs)
= ∑r=0n[∑s=0nrCr+r∑s=0nCs+Cr∑s=0ns+∑s=0nsCs]
= ∑r=0n[(n+1)r.Cr+r2n+2n(n+1)Cr+n.2n−1]
= (n + 1) (n · 2n–1) + 2n 2n(n+1)+ 2n(n+1)2n + n 2n–1 (n + 1)
= n (n + 1)2n + n (n + 1) 2n
= 2n (n + 1)2n …(1)
Also, ∑r=0n∑s=0n(r+s) (Cr + Cs)
= ∑r=0n4rCr + 2∑0≤r<∑s≤n(r+s) (Cr + Cs)
\ 2n(n + 1) 2n = 4n · 2n–1 + 2 ∑0≤r<∑s≤n(r+s) (Cr + Cs)
Ž ∑0≤r<∑s≤n(r+s) (Cr + Cs) = n2 · 2n.
Hence (1) is correct answer.