Question
Question: If \((1 + x)^{n} = \sum_{r = 0}^{n}{C_{r}x^{r}}\), then \(\left( 1 + \frac{C_{1}}{C_{0}} \right)\lef...
If (1+x)n=∑r=0nCrxr, then (1+C0C1)(1+C1C2)......(1+Cn−1Cn)=
A
(n−1)!nn−1
B
(n−1)!(n+1)n−1
C
n!(n+1)n
D
n!(n+1)n+1
Answer
n!(n+1)n
Explanation
Solution
We have (1+C0C1)(1+C1C2)........(1+Cn−1Cn)
= (1+1n)(1+nn(n−1)/2!)......(1+n1)
= (11+n)(21+n)(31+n).......(n1+n)=n!(n+1)n
Trick : Put
n=1,2,3.......,S1=1+1C01C1=2,S2=(1+2C12C1)(1+2C12C2)=29Which is given by option (3) n=1, 1!(1+1)1=2;
For n=2, 2!(2+1)2=29