Solveeit Logo

Question

Question: If \((1 + x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + ....... + C_{n}x^{n}\), then the value of \(C_{0} +...

If (1+x)n=C0+C1x+C2x2+.......+Cnxn(1 + x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + ....... + C_{n}x^{n}, then the value of C0+2C1+3C2+......(n+1)CnC_{0} + 2C_{1} + 3C_{2} + ......(n + 1)C_{n} will be

A

(n+2)2n1(n + 2)2^{n - 1}

B

(n+1)2n(n + 1)2^{n}

C

(n+1)2n1(n + 1)2^{n - 1}

D

(n+2)2n(n + 2)2^{n}

Answer

(n+2)2n1(n + 2)2^{n - 1}

Explanation

Solution

Sol. Trick: Put n=1n = 1 the expansion is equivalent to 1C0+2.1C1=1+2=31 ⥂ C_{0} + 2.^{1}C_{1} = 1 + 2 = 3.

Which is given by option (1) = (n+2)2n1(n + 2)2^{n - 1} =(1+2)20=3(1 + 2)2^{0} = 3