Solveeit Logo

Question

Question: If 1, x, y, z, 2 are in Geometric progression, the xyz= A) \(2\sqrt 2 \) B) 4 C) 8 D) None o...

If 1, x, y, z, 2 are in Geometric progression, the xyz=
A) 222\sqrt 2
B) 4
C) 8
D) None of this

Explanation

Solution

Geometric progression has the sequence a,ar,ar2,..........,arna,\,ar,\,a{r^2},..........,a{r^n} compare the values with the sequence and find the value of xyz. Then on solving the equation for a constant value, we’ll get our required result.

Complete step by step solution:
Given that 1, x, y, z, 2 are in Geometric progression, and the sequence of geometric progression is a,ar,ar2,..........,arna,\,ar,\,a{r^2},..........,a{r^n}.
Where, a= first term and r= common ratio.
Now compare the values with the series, where
a=1......(1) x=ar........(2) y=ar2.........(3) z=ar3..........(4) 2=ar4...........(5)  \Rightarrow a = 1......\left( 1 \right) \\\ \, \Rightarrow x = ar........\left( 2 \right) \\\ \Rightarrow y = a{r^2}.........\left( 3 \right) \\\ \Rightarrow z = a{r^3}..........\left( 4 \right) \\\ \Rightarrow 2 = a{r^4}...........\left( 5 \right) \\\
Substitute the value of a=1 in equation (5)
2=ar4 ar4=2 (1)r4=2 r4=2..........(6) r2=2.........(7)  \Rightarrow 2 = a{r^4} \\\ \Rightarrow a{r^4} = 2 \\\ \Rightarrow \left( 1 \right){r^4} = 2 \\\ \Rightarrow {r^4} = 2..........\left( 6 \right) \\\ \Rightarrow {r^2} = \sqrt 2 .........\left( 7 \right) \\\
For finding the value of xyz, multiply (2),(3) and (4)
xyz=(ar)(ar2)(ar3) xyz=a3r6 xyz=a3(r2×r4)  \Rightarrow xyz = \left( {ar} \right)\left( {a{r^2}} \right)\left( {a{r^3}} \right) \\\ \Rightarrow xyz = {a^3}{r^6} \\\ \Rightarrow xyz = {a^3}\left( {{r^2} \times {r^4}} \right) \\\
Where, r4=2{r^4} = 2, a=1, and r2=2{r^2} = \sqrt 2
Substitute the values in the above equation
xyz=a3(r2×r4) xyz=1(22) xyz=22  \Rightarrow xyz = {a^3}\left( {{r^2} \times {r^4}} \right) \\\ \Rightarrow xyz = 1\left( {2\sqrt 2 } \right) \\\ \Rightarrow xyz = 2\sqrt 2 \\\

So, the value of xyz=22xyz = 2\sqrt 2 .

Note:
Terms are in Geometric progression only when the ratio of any two adjacent values in the sequence is the same throughout the series. Whenever we need to choose three terms in GP we’ll always choose ar,a,ar\dfrac{a}{r}, a, ar.