Question
Mathematics Question on Complex Numbers and Quadratic Equations
If (1+x+x2)n=ao+a1x+a2x2+.....+a2nx2n, then ao+a3+a6+.....=
A
3n+1
B
3n
C
3n−1
D
Noneofthese
Answer
3n−1
Explanation
Solution
Given, (1+x+x2)n=a0+a1x+a2x2
+a3x3+…+aznx2n
(1+x+x2)n=(a0+a3x6+a9x9+…)
+x(a1+a4x3+a7x6+…)+x2(a2+a5x3+a8x6+…)
Let E1=a0+a3+a9+…
E2=a1+a4+a7+…
and E3=a2+a5+a8+…
put x=1,ω,ω2 respectively, we get
(1+1+1)n=E1+E2+E3
⇒3n=E1+E2+E3…(i)
(1+ω+ω2)n=E1+ωE2+ω2E3
⇒0=E1+ωE2+ω2E3…(ii)
and (1+ω2+ω4)n=E1+ω2E2+ω4E3
⇒0=E1+ω2E2+ωE3…(iii)
On adding Eqs. (i), (ii) and (iii), we get
3n=3E1+(1+ω+ω2)E2+(1+ω2+ω)E3
⇒3n=3E1+0+0
⇒E1=3n−1