Question
Mathematics Question on Binomial theorem
If 1+x4+x5=i=0∑5ai (1+x)i , for all x in R, then a2 is:
A
-4
B
6
C
-8
D
10
Answer
-4
Explanation
Solution
1+x4+x5=a0+a1(1+x)+a2(1+x)2+
a3(1+x)3+a4(1+x)4+a5(1+x)5
=a0+a1(1+x)+a2(1+2x+x2)+a3(1+3x
+3x2+x3)+a4(1+4x+6x2+4x3+x4)+a5(1
+5x+10x2+10x3+5x4+x5)
So, Coeff. of xi in LHS= Coeff. of xi on RHS
i=5⇒1=a5…(i)
i=4⇒1=a4+5a5=a4+5
⇒a4=−4…(ii)
i=3⇒0=a3+4a4+10a5
⇒a3−16+10=0
⇒a3=6… (iii)
i=2⇒0=a2+3a3+6a4+10a5
⇒a2+18−24+10=0
⇒a2=−4
Put x=−1
1=a0
Now differentiate w.r.t. x.
4x3+5x4=a1+2a2(1+x)+3a3(1+x)2+….
Put x=−1
⇒1=a1
Again differentiate w.r.t. x
12x2+20x3=2xa2+6a3(1+x)
Put x=−1
12−20=2a2
⇒a2=−4