Solveeit Logo

Question

Mathematics Question on Binomial theorem

If 1+x4+x5=i=05ai 1 + x^4 + x^5 = \sum\limits^{5}_{i =0} a_i (1+x)i(1 + x)^i , for all xx in RR, then a2a_2 is:

A

-4

B

6

C

-8

D

10

Answer

-4

Explanation

Solution

1+x4+x5=a0+a1(1+x)+a2(1+x)2+1+x^{4}+x^{5}=a_{0}+a_{1}(1+x)+a_{2}(1+x)^{2}+
a3(1+x)3+a4(1+x)4+a5(1+x)5a_{3}(1+x)^{3}+a_{4}(1+x)^{4}+a_{5}(1+x)^{5}
=a0+a1(1+x)+a2(1+2x+x2)+a3(1+3x=a_{0}+a_{1}(1+x)+a_{2}\left(1+2 x+x^{2}\right)+a_{3}(1+3 x
+3x2+x3)+a4(1+4x+6x2+4x3+x4)+a5(1\left.+3 x^{2}+x^{3}\right)+a_{4}\left(1+4 x+6 x^{2}+4 x^{3}+x^{4}\right)+a_{5}(1
+5x+10x2+10x3+5x4+x5)\left.+5 x+10 x^{2}+10 x^{3}+5 x^{4}+x^{5}\right)
So, Coeff. of xix ^{ i } in LHS=LHS = Coeff. of xix ^{ i } on RHSRHS
i=51=a5i =5 \Rightarrow 1= a _{5} \ldots(i)
i=41=a4+5a5=a4+5i =4 \Rightarrow 1= a _{4}+5 a _{5}= a _{4}+5
a4=4\Rightarrow a _{4}=-4 \ldots(ii)
i=30=a3+4a4+10a5i =3 \Rightarrow 0= a _{3}+4 a _{4}+10 a _{5}
a316+10=0\Rightarrow a _{3}-16+10=0
a3=6\Rightarrow a _{3}=6 \ldots (iii)
i=20=a2+3a3+6a4+10a5i =2 \Rightarrow 0= a _{2}+3 a _{3}+6 a _{4}+10 a _{5}
a2+1824+10=0\Rightarrow a _{2}+18-24+10=0
a2=4\Rightarrow a _{2}=-4
Put x=1x =-1
1=a01= a _{0}
Now differentiate w.r.t. xx.
4x3+5x4=a1+2a2(1+x)+3a3(1+x)2+.4 x^{3}+5 x^{4}=a_{1}+2 a_{2}(1+x)+3 a_{3}(1+x)^{2}+\ldots .
Put x=1x=-1
1=a1\Rightarrow 1=a_{1}
Again differentiate w.r.t. xx
12x2+20x3=2xa2+6a3(1+x)12 x^{2}+20 x^{3}=2 x a_{2}+6 a_{3}(1+x)
Put x=1x=-1
1220=2a212 - 20 = 2a_2
a2=4\Rightarrow a_2 = -4