Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

If (1+tan1)(1+tan2)......(1+tan45)=2n(1 + \tan \, 1^{\circ})(1 + \tan \, 2^{\circ}) ...... (1 + \tan \, 45^{\circ}) = 2^n, then n is

A

22

B

24

C

23

D

12

Answer

23

Explanation

Solution

We have,
(1+tan1)(1+tan2).(1+tan45)=2n\left(1+\tan 1^{\circ}\right)\left(1+\tan 2^{\circ}\right) \ldots .\left(1+\tan 45^{\circ}\right)=2^{ n }
Now, (1+tanθ)(1+tan(45θ))(1+\tan \theta)\left(1+\tan \left(45^{\circ}-\theta\right)\right)
=(1+tanθ)(1+1tanθ1+tanθ)=(1+\tan \theta)\left(1+\frac{1-\tan \theta}{1+\tan \theta}\right)
=(1+tanθ)(1+tanθ+1tanθ)1+tanθ=2=(1+\tan \theta) \frac{(1+\tan \theta+1-\tan \theta)}{1+\tan \theta}=2
(1+tan)(1+tan44)(1+tan2)(1+tan43)\therefore\left(1+\tan ^{\circ}\right)\left(1+\tan 44^{\circ}\right)\left(1+\tan 2^{\circ}\right)\left(1+\tan 43^{\circ}\right)
(1+tan22)(1+tan23)(1+tan45)\ldots\left(1+\tan 22^{\circ}\right)\left(1+\tan 23^{\circ}\right)\left(1+\tan 45^{\circ}\right)
=2×2×222=2\times2\times2\ldots\ldots\ldots 22 times ×(1+1)\times \left(1+1\right)
=222×2=223=2^{22}\times2=2^{23}
n=23\therefore n=23