Solveeit Logo

Question

Question: If \((1 + \sin A)(1 + \sin B)(1 + \sin C) = (1 - \sin A)(1 - \sin B)(1 - \sin C),\) then each side i...

If (1+sinA)(1+sinB)(1+sinC)=(1sinA)(1sinB)(1sinC),(1 + \sin A)(1 + \sin B)(1 + \sin C) = (1 - \sin A)(1 - \sin B)(1 - \sin C), then each side is equal to

A

±sinAsinBsinC\pm \sin A\sin B\sin C

B

±cosAcosBcosC\pm \cos A\cos B\cos C

C

±sinAcosBcosC\pm \sin A\cos B\cos C

D

±cosAsinBsinC\pm \cos A\sin B\sin C

Answer

±cosAcosBcosC\pm \cos A\cos B\cos C

Explanation

Solution

Multiplying both sides by

(1sinA)(1sinB)(1sinC)(1 - \sin A)(1 - \sin B)(1 - \sin C),

we have, (1sin2A)(1sin2B)(1sin2C)(1 - \sin^{2}A)(1 - \sin^{2}B)(1 - \sin^{2}C)

=(1sinA)2(1sinB)2(1sinC)2= (1 - \sin A)^{2}(1 - \sin B)^{2}(1 - \sin C)^{2}

(1sinA)(1sinB)(1sinC)=±cosAcosBcosC(1 - \sin A)(1 - \sin B)(1 - \sin C) = \pm \cos A\cos B\cos C

Similarly, (1+sinA)(1+sinB)(1+sinC)=±cosAcosBcosC(1 + \sin A)(1 + \sin B)(1 + \sin C) = \pm \cos A\cos B\cos C.