Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If (1p)(1 - p) is a root of quadratic equation x2+px+(1p)=0x^2 + px + (1- p) = 0, then its roots are

A

0, 1

B

-1, 2

C

0, -1

D

-1, 1

Answer

0, -1

Explanation

Solution

(1p)2+p(1p)+(1p)=0\left(1-p\right)^{2}+p\left(1-p\right)+\left(1-p\right) = 0\quad (since (1p)\left(1 - p\right) is a root of the equation x2+px+(1p)=0x^{2} + px + \left(1 - p\right) = 0) ?(1p)(1p+p+1)=0?\quad \left(1- p\right)\left(1- p + p + 1\right) = 0 ?2(1p)=0?(1p)=0?p=1?\quad 2\left(1- p\right) = 0? \left(1 - p\right) = 0 ? p = 1 sum of root is a+??=pa + ??= -p and product a??=1p=0a??= 1- p = 0\quad (where ??=1p=0??= 1 - p = 0) ?a+0=1?a=1??\quad a + 0 = -1 \quad? a = -1?\quad Roots are 0,10, -1