Solveeit Logo

Question

Mathematics Question on Determinants

If 1,ω,ω21,\omega,\omega^2 are the cube roots of unity, then Δ=1ωnω2n\[0.3em]ωnω2n1\[0.3em]ω2n1ωn\Delta=\begin{vmatrix} 1&\omega^n &\omega^{2n} \\\[0.3em] \omega^n &\omega^{2n} & 1 \\\[0.3em] \omega^{2n} &1& \omega^n \end{vmatrix} is equal to

A

ω2\omega^2

B

0

C

1

D

ω\omega

Answer

0

Explanation

Solution

Write 1 as ω3n\omega^{3n} in R1R_1 and take out ωn\omega^n from R1R_1, we get Δ=ωnω2n1ωn\[0.3em]ωnω2n1\[0.3em]ω2n1ωn\Delta= \omega^n \begin{vmatrix} \omega^{2n} &1&\omega^n \\\[0.3em] \omega^n &\omega^{2n} & 1 \\\[0.3em] \omega^{2n} &1& \omega^n \end{vmatrix} = 0 [R1,R3\therefore \, R_1 , R_3 are identical]