Solveeit Logo

Question

Mathematics Question on complex numbers

If 1,ω,ω21 , \omega , \omega^2 are the cube roots of unity, then 11+2ω+12+ω11+ω=\frac{1}{1+2\omega} + \frac{1}{2+\omega } - \frac{1}{1+\omega } =

A

1

B

ω\omega

C

ω2\omega^2

D

0

Answer

0

Explanation

Solution

Cube roots of unity mean ω3=1\omega^3=1 and 1+ω+ω2=01+\omega+\omega^2 = 0 →

11+2ω+12+ω11+ω\frac{1}{1+2\omega}+\frac{1}{2+\omega}-\frac{1}{1+\omega}

=(2+ω)+(1+2ω)(1+2ω)(2+ω)11+ω=\frac{(2+\omega)+(1+2\omega)}{(1+2\omega)(2+\omega)}-\frac{1}{1+\omega}

=3+3ωω+2ω2+2+4ω11+ω=\frac{3+3\omega}{\omega+2\omega^{2}+2+4\omega}-\frac{1}{1+\omega}

=3(1+ω)2ω2+5ω+211+ω=\frac{3(1+\omega)}{2\omega^{2}+5\omega+2}-\frac{1}{1+\omega}

=(3+3ω)(1+ω)(2ω2+5ω+2(2ω2+5ω+2)(1+ω)=\frac{(3+3\omega)(1+\omega)-(2\omega^2+5\omega+2}{(2\omega^{2}+5\omega+2)(1+\omega)}

=3+3ω+3ω+3ω22ω25ω22ω2+5ω+2+2ω3+5ω2+2ω=\frac{3+3\omega+3\omega+3\omega^2-2\omega^2-5\omega-2}{2\omega^2+5\omega+2+2\omega^3+5\omega^2+2\omega}

=ω2+ω+12ω3+7ω2+7ω+2=\frac{\omega^2+\omega+1}{2\omega^3+7\omega^2+7\omega+2}

=02ω3+7ω2+7ω+2=\frac{0}{2\omega^{3}+7\omega^{2}+7\omega+2}

=0=0