Solveeit Logo

Question

Question: If \(1,\omega ,{{\omega }^{2}}\)are cube root of unity, then find the value of \[\left( 1+3\omega +{...

If 1,ω,ω21,\omega ,{{\omega }^{2}}are cube root of unity, then find the value of (1+3ω+ω2)+(1+3ωω2)4\left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}} .

Explanation

Solution

Hint: The given problem is related to cube roots of unity. We will solve this question using the following properties of cube roots of unity:
(i). 1+ω+ω2=01+\omega +{{\omega }^{2}}=0
(ii). ω3=1{{\omega }^{3}}=1

Complete step-by-step answer:

To proceed with the solution, firstly, we will simplify the given expression. The given expression is (1+3ω+ω2)+(1+3ωω2)4\left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}. We can split 3ω3\omega as ω+2ω\omega +2\omega and ω2-{{\omega }^{2}} in the second term as 2ω2+ω2-2{{\omega }^{2}}+{{\omega }^{2}}. So, the expression changes to (1+ω+ω2+2ω)+(1+ω+ω2+2ω2ω2)4\left( 1+\omega +{{\omega }^{2}}+2\omega \right)+{{\left( 1+\omega +{{\omega }^{2}}+2\omega -2{{\omega }^{2}} \right)}^{4}} . Now, we know 1+ω+ω2=01+\omega +{{\omega }^{2}}=0 .
(1+ω+ω2+2ω)+(1+ω+ω2+2ω2ω2)4=(0+2ω)+(0+2ω2ω2)4\Rightarrow \left( 1+\omega +{{\omega }^{2}}+2\omega \right)+{{\left( 1+\omega +{{\omega }^{2}}+2\omega -2{{\omega }^{2}} \right)}^{4}}=\left( 0+2\omega \right)+{{\left( 0+2\omega -2{{\omega }^{2}} \right)}^{4}}.
(1+3ω+ω2)+(1+3ωω2)4=2ω+(2ω2ω2)4\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=2\omega +{{\left( 2\omega -2{{\omega }^{2}} \right)}^{4}}
Now, we will take 2ω\omega common from the second term. So, on taking 2ω\omega common, we get:
(1+3ω+ω2)+(1+3ωω2)4=2ω+(2ω(1ω))4\left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=2\omega +{{\left( 2\omega \left( 1-\omega \right) \right)}^{4}}
(1+3ω+ω2)+(1+3ωω2)4=(2ω)+16ω4(1ω)4.......(i)\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=\left( 2\omega \right)+16{{\omega }^{4}}{{\left( 1-\omega \right)}^{4}}.......(i)
Now, we know that the expansion of (1x)4=x44x3+6x24x+1{{\left( 1-x \right)}^{4}}={{x}^{4}}-4{{x}^{3}}+6{{x}^{2}}-4x+1. So, the expansion of (1ω)4{{\left( 1-\omega \right)}^{^{4}}}will be (1ω)4=ω44ω3+6ω24ω+1{{\left( 1-\omega \right)}^{^{4}}}={{\omega }^{4}}-4{{\omega }^{3}}+6{{\omega }^{2}}-4\omega +1
Now, we know that the value of ω3=1{{\omega }^{3}}=1 .
(1ω)4=ω4+6ω24ω+1\Rightarrow {{\left( 1-\omega \right)}^{^{4}}}=\omega -4+6{{\omega }^{2}}-4\omega +1
(1ω)4=3ω3+6ω2\Rightarrow {{\left( 1-\omega \right)}^{^{4}}}=-3\omega -3+6{{\omega }^{2}}
Taking -3 common, we get:
(1ω)4=3(1+ω2ω2){{\left( 1-\omega \right)}^{^{4}}}=-3\left( 1+\omega -2{{\omega }^{2}} \right)
(1ω)4=3(1+ω+ω23ω2)\Rightarrow {{\left( 1-\omega \right)}^{^{4}}}=-3\left( 1+\omega +{{\omega }^{2}}-3{{\omega }^{2}} \right)
Now, we know, 1+ω+ω2=01+\omega +{{\omega }^{2}}=0
(1ω)4=3(03ω2)\Rightarrow {{\left( 1-\omega \right)}^{4}}=-3\left( 0-3{{\omega }^{2}} \right)
(1ω)4=9ω2\Rightarrow {{\left( 1-\omega \right)}^{4}}=9{{\omega }^{2}}
On substituting (1ω)4=9ω2{{\left( 1-\omega \right)}^{4}}=9{{\omega }^{2}} in equation (i), we get:
(1+3ω+ω2)+(1+3ωω2)4=(2ω)+16ω4×9ω2\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=\left( 2\omega \right)+16{{\omega }^{4}}\times 9{{\omega }^{2}}
=(1+3ω+ω2)+(1+3ωω2)4=(2ω)+144ω6\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=\left( 2\omega \right)+144{{\omega }^{6}}
(1+3ω+ω2)+(1+3ωω2)4=(2ω)+144(ω3)2\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=\left( 2\omega \right)+144{{\left( {{\omega }^{3}} \right)}^{2}}
(1+3ω+ω2)+(1+3ωω2)4=(2ω)+144\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=\left( 2\omega \right)+144
Hence, the value of (1+3ω+ω2)+(1+3ωω2)4\left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}comes out to be 144+2ω144+2\omega

Note: While making substitution, take care of the sign. Sign mistakes are very common and students can get a wrong answer even due to a single sign mistake. So, students should perform calculations and substitutions very carefully.