Solveeit Logo

Question

Mathematics Question on Sequence and series

If 1,log81(3x+48)1, log_{81} \left(3^x + 48\right) and log9(3x83)log_{9}\left(3^{x} - \frac{8}{3}\right) are in A.PA. P., then xx is equal to

A

11

B

22

C

99

D

33

Answer

22

Explanation

Solution

The three numbers log99,log92(3x+48)log_{9} 9, log_{9^{2}} \left(3^{x} +48\right) and log9(3x83)log_{9} \left(3^{x} - \frac{8}{3}\right) are in A.PA. P. i.e. log99,12log9(3x+48),log9(3x83)log_{9}9, \frac{1}{2} log_{9} \left(3^{x} + 48\right), log_{9} \left(3^{x}-\frac{8}{3} \right) are in A.PA. P. 3x+48=9(3x83) \Rightarrow 3^{x} + 48 = 9\left(3^{x} -\frac{8}{3}\right) 8×3x=72\Rightarrow 8 \times 3^{x} =72 3x=9\Rightarrow 3^{x} = 9 x=2\Rightarrow x = 2.