Solveeit Logo

Question

Question: If \((1 + i)^{6} + (1 - i)^{6}\)then \(i^{2} = - 1\)is equal to....

If (1+i)6+(1i)6(1 + i)^{6} + (1 - i)^{6}then i2=1i^{2} = - 1is equal to.

A

i+i2+i3+...i + i^{2} + i^{3} + ...

B

x=3+ix = 3 + i

C

x33x28x+15=x^{3} - 3x^{2} - 8x + 15 =

D

None of these

Answer

x=3+ix = 3 + i

Explanation

Solution

(x+y)+i(x+y)=13i(x + y) + i( - x + y) = 1 - 3ix+y=1x + y = 1

x+y=3- x + y = - 3

\therefore

Equating real and imaginary parts, we get

x=2,y=1x = 2,y = - 1and (2,1)(2, - 1)

(3+2isinθ)(1+2isinθ)(12isinθ)(1+2isinθ)\frac{(3 + 2i\sin\theta)(1 + 2i\sin\theta)}{(1 - 2i\sin\theta)(1 + 2i\sin\theta)} (2x+3y)+i(3x+2y)=4+i(2x + 3y) + i( - 3x + 2y) = 4 + i