Question
Question: If (1+i)(1+2i)…(1+ni) = x+iy, then prove that \[{{x}^{2}}+{{y}^{2}}=2\cdot 5\cdot 10\ldots \left(...
If (1+i)(1+2i)…(1+ni) = x+iy, then prove that
x2+y2=2⋅5⋅10…(1+n2)
Explanation
Solution
Hint: Apply mod on both sides of the equation. Use the fact that if a and b are two complex numbers then |ab| = |a||b|. Use the fact that if z = x+iy then ∣z∣=x2+y2. Square both sides and use the fact that (ab)m=ambm
Complete step-by-step answer:
We have (1+i)(1+2i)…(1+ni) = x+iy,
Taking absolute value on both sides, we get
|(1+i)(1+2i)…(1+ni)| =| x+iy|
Using |ab| = |a||b|, we get
|(1+i)||(1+2i)|…|(1+ni)| = |x+iy|
Squaring both sides, we get
(∣(1+i)∣∣(1+2i)∣…∣(1+ni)∣)2 = (∣x+iy∣)2
Using if z = x+iy then ∣z∣=x2+y2, we get