Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If (1+i)(1+2i)(1+3i).....(1+ni)=x+iy, (1 + i) (1 + 2i) (1 + 3i) ..... (1 + ni) = x + iy, then 25102\cdot 5 \cdot 10 (1+n2)=.......(1 + n^2) =.......

A

11

B

ii

C

1+n21+n^2

D

x2+y2x^2 + y^2

Answer

x2+y2x^2 + y^2

Explanation

Solution

Since (1+i)(1+2i)(1+3i)......(1+ni)(1 + i) (1 + 2i) (1 + 3i)......(1 + ni) =x+iy(1)=x+iy \quad \ldots(1) (1i)(12i)(13i)....(1ni)\therefore (1 - i) (1 - 2i) (1 - 3i) .... (1 - ni) =xiy(2)=x-iy\quad \ldots(2) Multilying (1)(1) and (2)(2) we get, (1i2)(14i2)(19i2).....(1n2i2)\left(1-i^{2}\right)\left(1-4i^{2}\right)\left(1-9i^{2}\right).....\left(1-n^{2}i^{2}\right) =x2i2y2=x^{2}-i^{2}y^{2} (1+1)(1+4)(1+9)....(1+n2)=x2+y2\Rightarrow \left(1+1\right)\left(1+4\right)\left(1+9\right)....\left(1+n^{2}\right)=x^{2}+y^{2} 2510.....+(1+n2)=x2+y2\Rightarrow 2\cdot5\cdot10 .....+\left(1+n^{2}\right)=x^{2}+y^{2}