Solveeit Logo

Question

Question: If ƒ(1) = g(1) = 2 and ƒ′(1), g′(1) exist then evaluate (\frac{ƒ(1)g(x) - ƒ(1) - g(1)ƒ(x) + g(1)}{g...

If ƒ(1) = g(1) = 2 and ƒ′(1), g′(1) exist then evaluate

(\frac{ƒ(1)g(x) - ƒ(1) - g(1)ƒ(x) + g(1)}{g(x) - ƒ(x)})

A

1

B

2

C

3

D

None of these

Answer

2

Explanation

Solution

Here, the form is .

∴ limit = limx1\lim _ { x \rightarrow 1 }  

{using L’ Hospital’s rule}

limx1\lim _ { x \rightarrow 1 } 2{ g(x)f(x)}g(x)f(x)\frac { 2 \left\{ \mathrm {~g} ^ { \prime } ( \mathrm { x } ) - f ^ { \prime } ( \mathrm { x } ) \right\} } { \mathrm { g } ^ { \prime } ( \mathrm { x } ) - f ^ { \prime } ( \mathrm { x } ) } = limx1\lim _ { x \rightarrow 1 } 2 = 2.