Question
Question: If $1-\frac{1}{3^2}+\frac{1}{5^2}-\frac{1}{7^2}+\frac{1}{9^2} - .........\infty = 0.9159$ and if $I ...
If 1−321+521−721+921−.........∞=0.9159 and if I=∫0∞ex+e−xxdx then the value of [10I] is equal to (where [.] denotes G.I.F)

9
Solution
To evaluate the integral I=∫0∞ex+e−xxdx, we first simplify the integrand.
The denominator ex+e−x can be written as 2coshx. So, I=∫0∞2coshxxdx=21∫0∞coshxxdx.
Next, we expand coshx1 into a series. coshx1=ex+e−x2=1+e−2x2e−x. Using the geometric series expansion 1+r1=1−r+r2−r3+... for ∣r∣<1, with r=e−2x: 1+e−2x1=1−e−2x+e−4x−e−6x+... This expansion is valid for x>0, as e−2x<1. Substituting this back: coshx1=2e−x(1−e−2x+e−4x−e−6x+...) coshx1=2(e−x−e−3x+e−5x−e−7x+...) coshx1=2∑n=0∞(−1)ne−(2n+1)x.
Now, substitute this series into the integral for I: I=21∫0∞x(2∑n=0∞(−1)ne−(2n+1)x)dx I=∫0∞x(∑n=0∞(−1)ne−(2n+1)x)dx We can interchange the integral and the summation (due to uniform convergence of the series for x≥ϵ>0): I=∑n=0∞(−1)n∫0∞xe−(2n+1)xdx.
Now we need to evaluate the integral ∫0∞xe−axdx. This integral can be solved using integration by parts or by using the Laplace transform. Using Laplace transform definition L{f(t)}(s)=∫0∞e−stf(t)dt. For f(t)=t, L{t}(s)=s21. So, ∫0∞xe−axdx=a21.
Substitute a=(2n+1) into the result of the integral: ∫0∞xe−(2n+1)xdx=(2n+1)21.
Now substitute this back into the sum for I: I=∑n=0∞(−1)n(2n+1)21 Expanding the sum: I=(−1)0(2(0)+1)21+(−1)1(2(1)+1)21+(−1)2(2(2)+1)21+... I=121−321+521−721+921−...
This is exactly the series given in the problem statement: 1−321+521−721+921−.........∞=0.9159. Therefore, I=0.9159.
The question asks for the value of [10I], where [.] denotes the Greatest Integer Function (G.I.F). 10I=10×0.9159=9.159. [10I]=[9.159]. The greatest integer less than or equal to 9.159 is 9.
The final answer is 9.