Solveeit Logo

Question

Question: If $1-\frac{1}{3^2}+\frac{1}{5^2}-\frac{1}{7^2}+\frac{1}{9^2} - .........\infty = 0.9159$ and if $I ...

If 1132+152172+192.........=0.91591-\frac{1}{3^2}+\frac{1}{5^2}-\frac{1}{7^2}+\frac{1}{9^2} - .........\infty = 0.9159 and if I=0xex+exdxI = \int_{0}^{\infty} \frac{x}{e^x+e^{-x}}dx then the value of [10I][10I] is equal to (where [.] denotes G.I.F)

Answer

9

Explanation

Solution

To evaluate the integral I=0xex+exdxI = \int_{0}^{\infty} \frac{x}{e^x+e^{-x}}dx, we first simplify the integrand.

The denominator ex+exe^x+e^{-x} can be written as 2coshx2 \cosh x. So, I=0x2coshxdx=120xcoshxdxI = \int_{0}^{\infty} \frac{x}{2 \cosh x} dx = \frac{1}{2} \int_{0}^{\infty} \frac{x}{\cosh x} dx.

Next, we expand 1coshx\frac{1}{\cosh x} into a series. 1coshx=2ex+ex=2ex1+e2x\frac{1}{\cosh x} = \frac{2}{e^x+e^{-x}} = \frac{2e^{-x}}{1+e^{-2x}}. Using the geometric series expansion 11+r=1r+r2r3+...\frac{1}{1+r} = 1-r+r^2-r^3+... for r<1|r|<1, with r=e2xr=e^{-2x}: 11+e2x=1e2x+e4xe6x+...\frac{1}{1+e^{-2x}} = 1 - e^{-2x} + e^{-4x} - e^{-6x} + ... This expansion is valid for x>0x>0, as e2x<1e^{-2x} < 1. Substituting this back: 1coshx=2ex(1e2x+e4xe6x+...)\frac{1}{\cosh x} = 2e^{-x} (1 - e^{-2x} + e^{-4x} - e^{-6x} + ...) 1coshx=2(exe3x+e5xe7x+...)\frac{1}{\cosh x} = 2 (e^{-x} - e^{-3x} + e^{-5x} - e^{-7x} + ...) 1coshx=2n=0(1)ne(2n+1)x\frac{1}{\cosh x} = 2 \sum_{n=0}^{\infty} (-1)^n e^{-(2n+1)x}.

Now, substitute this series into the integral for II: I=120x(2n=0(1)ne(2n+1)x)dxI = \frac{1}{2} \int_{0}^{\infty} x \left( 2 \sum_{n=0}^{\infty} (-1)^n e^{-(2n+1)x} \right) dx I=0x(n=0(1)ne(2n+1)x)dxI = \int_{0}^{\infty} x \left( \sum_{n=0}^{\infty} (-1)^n e^{-(2n+1)x} \right) dx We can interchange the integral and the summation (due to uniform convergence of the series for xϵ>0x \ge \epsilon > 0): I=n=0(1)n0xe(2n+1)xdxI = \sum_{n=0}^{\infty} (-1)^n \int_{0}^{\infty} x e^{-(2n+1)x} dx.

Now we need to evaluate the integral 0xeaxdx\int_{0}^{\infty} x e^{-ax} dx. This integral can be solved using integration by parts or by using the Laplace transform. Using Laplace transform definition L{f(t)}(s)=0estf(t)dt\mathcal{L}\{f(t)\}(s) = \int_0^\infty e^{-st} f(t) dt. For f(t)=tf(t)=t, L{t}(s)=1s2\mathcal{L}\{t\}(s) = \frac{1}{s^2}. So, 0xeaxdx=1a2\int_{0}^{\infty} x e^{-ax} dx = \frac{1}{a^2}.

Substitute a=(2n+1)a = (2n+1) into the result of the integral: 0xe(2n+1)xdx=1(2n+1)2\int_{0}^{\infty} x e^{-(2n+1)x} dx = \frac{1}{(2n+1)^2}.

Now substitute this back into the sum for II: I=n=0(1)n1(2n+1)2I = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)^2} Expanding the sum: I=(1)01(2(0)+1)2+(1)11(2(1)+1)2+(1)21(2(2)+1)2+...I = (-1)^0 \frac{1}{(2(0)+1)^2} + (-1)^1 \frac{1}{(2(1)+1)^2} + (-1)^2 \frac{1}{(2(2)+1)^2} + ... I=112132+152172+192...I = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \frac{1}{9^2} - ...

This is exactly the series given in the problem statement: 1132+152172+192.........=0.91591-\frac{1}{3^2}+\frac{1}{5^2}-\frac{1}{7^2}+\frac{1}{9^2} - .........\infty = 0.9159. Therefore, I=0.9159I = 0.9159.

The question asks for the value of [10I][10I], where [.][.] denotes the Greatest Integer Function (G.I.F). 10I=10×0.9159=9.15910I = 10 \times 0.9159 = 9.159. [10I]=[9.159][10I] = [9.159]. The greatest integer less than or equal to 9.159 is 9.

The final answer is 9.