Question
Quantitative Ability and Data Interpretation Question on Trigonometry
If 1+cotθtanθ+(cotθtanθ)2+(cotθtanθ)3+...∞=23, then find the value of cot4θ−cot2θtan2θ−tan4θ.
A
811
B
91
C
271
D
2431
E
None of the above
Answer
271
Explanation
Solution
1+cotθtanθ+(cotθtanθ)2+(cotθtanθ)3+...∞=23
⇒1+tanθ1tanθ+(tanθ1tanθ)2+(tanθ1tanθ)3+...∞=23
⇒1+tan2θ+tan4θ+tan6θ+...∞=23
We know that the square of any number is positive. So, from the above equation we can conclude that it is a descending GP series.
So, 1−(tanθ)21=23
2=3−3(tanθ)2
tan2θ=31
Thus, cot4θ−cot2θtan2θ−tan4θ
= (3)2−331−(31)2
=9−331−91
=271
Hence, option C is the correct answer.