Solveeit Logo

Question

Mathematics Question on Series

If 1+3223+52618+93112363+49206180+1 + \frac{\sqrt{3} - \sqrt{2}}{2\sqrt{3}} + \frac{5 - 2\sqrt{6}}{18} + \frac{9\sqrt{3} - 11\sqrt{2}}{36\sqrt{3}} + \frac{49 - 20\sqrt{6}}{180} + \cdots up to =2(ba+1)loge(ab)\infty = 2 \left( \sqrt{\frac{b}{a}} + 1 \right) \log_e \left( \frac{a}{b} \right), where aa and bb are integers with gcd(a,b)=1\gcd(a, b) = 1, then (11a + 18b) is equal to _________.

Answer

Given the infinite series:

S=1+x23+x218+x3363+x4180+,S = 1 + \frac{x}{2\sqrt{3}} + \frac{x^2}{18} + \frac{x^3}{36\sqrt{3}} + \frac{x^4}{180} + \dots, where x=32x = \sqrt{3} - \sqrt{2}.

Step 1: Expressing the Series Let:

t=x3wherex=32.t = \frac{x}{\sqrt{3}} \quad \text{where} \quad x = \sqrt{3} - \sqrt{2}.

Rewriting the series:

S=1+t2+t26+t312+t420+.S = 1 + \frac{t}{2} + \frac{t^2}{6} + \frac{t^3}{12} + \frac{t^4}{20} + \dots.

Step 2: Using the Known Expansion From known series expansions, we have:

S=2+n=1tnn(n+1).S = 2 + \sum_{n=1}^\infty \frac{t^n}{n(n+1)}.

Using the expansion:

S=2+(log(1t))+2.S = 2 + \left(- \log(1 - t)\right) + 2.

Substituting t=323t = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3}}:

S=2+log(332).S = 2 + \log\left(\frac{\sqrt{3}}{\sqrt{3} - \sqrt{2}}\right).

Step 3: Evaluating Constants Given:

S=2(ba+1)loge(ab).S = 2 \left(\sqrt{\frac{b}{a} + 1}\right) \log_e\left(\frac{a}{b}\right).

Comparing terms, we identify:

a=2,b=3.a = 2, \quad b = 3.

Step 4: Calculating the Required Expression

11a+18b=11×2+18×3=22+54=76.11a + 18b = 11 \times 2 + 18 \times 3 = 22 + 54 = 76.

Therefore, the correct answer is 7676.