Solveeit Logo

Question

Quantitative Aptitude Question on Divisibility and Remainder

If 1+12+13+14+15+16+17+18+19....129=N29!1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}....\frac{1}{29} =\frac{N}{29!} Find the remainder when N is divided by 19.

A

7

B

10

C

9

D

8

Answer

10

Explanation

Solution

We have the sum: 1+12+13+14+15+16+17+18+19++129=N29!.1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \ldots + \frac{1}{29} = \frac{N}{29!}.
First, let's rewrite the given expression using a common denominator.
The common denominator of the fractions from 1 to 29 is 29!29!, so:
29!29!+1429!229!+29!329!+29!429!+29!529!+29!629!+29!729!+29!829!+29!929!++29!2929!=N29!\frac{29!}{29!} + \frac{14 \cdot 29!}{2 \cdot 29!} + \frac{29!}{3 \cdot 29!} + \frac{29!}{4 \cdot 29!} + \frac{29!}{5 \cdot 29!} + \frac{29!}{6 \cdot 29!} + \frac{29!}{7 \cdot 29!} + \frac{29!}{8 \cdot 29!} + \frac{29!}{9 \cdot 29!} + \ldots + \frac{29!}{29 \cdot 29!} = \frac{N}{29!}.
Simplifying each fraction:
1+14+13+14+15+16+17+18+19++129=N29!.1 + 14 + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \ldots + \frac{1}{29} = \frac{N}{29!}.
Now, let's find the sum of the fractions:
N29!=15+(13+16)+(14+18)+(15+110)++(129+158).\frac{N}{29!} = 15 + \left(\frac{1}{3} + \frac{1}{6}\right) + \left(\frac{1}{4} + \frac{1}{8}\right) + \left(\frac{1}{5} + \frac{1}{10}\right) + \ldots + \left(\frac{1}{29} + \frac{1}{58}\right).
Notice that we have pairs of fractions within parentheses, where the second fraction is half of the first fraction.
This simplifies to:
N29!=15+12+12+12++12.\frac{N}{29!} = 15 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \ldots + \frac{1}{2}.
There are a total of 28 fractions in this form. So:
N29!=15+2812=15+14=29.\frac{N}{29!} = 15 + 28 \cdot \frac{1}{2} = 15 + 14 = 29.
Now, to find the remainder when NN is divided by 19, we will calculate 29mod1929 \mod 19: 29mod19=10.29 \mod 19 = 10.
So, the remainder when NN is divided by 19 is 1010.
Therefore, the correct option is(B): 1010.