Solveeit Logo

Question

Question: If $(1 + |\cos x|)^{\frac{|\tan x|}{b}} = (1 + |\cos x|)^{b(|\tan x|^2 - |\tan x|)}$, b > 0 where $\...

If (1+cosx)tanxb=(1+cosx)b(tanx2tanx)(1 + |\cos x|)^{\frac{|\tan x|}{b}} = (1 + |\cos x|)^{b(|\tan x|^2 - |\tan x|)}, b > 0 where π<x<3π2\pi < x < \frac{3\pi}{2}, then least integral value of btanx is

Answer

2

Explanation

Solution

For π<x<3π2\pi < x < \frac{3\pi}{2}, xx is in the third quadrant. In this quadrant, tanx>0\tan x > 0 and cosx<0\cos x < 0. Therefore, tanx=tanx|\tan x| = \tan x and cosx=cosx|\cos x| = -\cos x. The given equation is (1+cosx)tanxb=(1+cosx)b(tanx2tanx)(1 + |\cos x|)^{\frac{|\tan x|}{b}} = (1 + |\cos x|)^{b(|\tan x|^2 - |\tan x|)}. Since cosx(1,0)\cos x \in (-1, 0), cosx(0,1)|\cos x| \in (0, 1). Thus, the base (1+cosx)(1 + |\cos x|) is in the range (1,2)(1, 2), which is greater than 1. We can equate the exponents: tanxb=b(tanx2tanx)\frac{|\tan x|}{b} = b(|\tan x|^2 - |\tan x|) Substitute tanx=tanx|\tan x| = \tan x: tanxb=b(tan2xtanx)\frac{\tan x}{b} = b(\tan^2 x - \tan x) Since b>0b > 0 and tanx>0\tan x > 0 in the given interval, we can divide both sides by btanxb \tan x: 1b2=tanx1\frac{1}{b^2} = \tan x - 1 tanx=1+1b2\tan x = 1 + \frac{1}{b^2} We need to find the least integral value of btanxb \tan x. Substitute the expression for tanx\tan x: btanx=b(1+1b2)=b+1bb \tan x = b \left(1 + \frac{1}{b^2}\right) = b + \frac{1}{b} By the AM-GM inequality, for b>0b > 0, we have: b+1b2b1b\frac{b + \frac{1}{b}}{2} \ge \sqrt{b \cdot \frac{1}{b}} b+1b21\frac{b + \frac{1}{b}}{2} \ge 1 b+1b2b + \frac{1}{b} \ge 2 The minimum value of b+1bb + \frac{1}{b} is 2, which occurs when b=1bb = \frac{1}{b}, i.e., b2=1b^2 = 1. Since b>0b > 0, this means b=1b=1. Thus, the minimum value of btanxb \tan x is 2. The expression btanxb \tan x can take any value greater than or equal to 2. The least integral value in this range is 2.