Solveeit Logo

Question

Question: If \((1 + ax)^{n} = 1 + 8x + 24x^{2} + .....\) then the value of *a* and *n* is...

If (1+ax)n=1+8x+24x2+.....(1 + ax)^{n} = 1 + 8x + 24x^{2} + ..... then the value of a and n is

A

2,42,4

B

2, 3

C

3, 6

D

1, 2

Answer

2,42,4

Explanation

Solution

We know that (1+x)n=1+nx1!+n(n1)x22!+.....(1 + x)^{n} = 1 + \frac{nx}{1!} + \frac{n(n - 1)x^{2}}{2!} + .....

(1+ax)n=1+n(ax)1!+n(n1)(ax)22!+......(1 + ax)^{n} = 1 + \frac{n(ax)}{1!} + \frac{n(n - 1)(ax)^{2}}{2!} + ......

1+8x+24x2+......=1+n(ax)1!+n(n1)(ax)22!+....1 + 8x + 24x^{2} + ...... = 1 + \frac{n(ax)}{1!} + \frac{n(n - 1)(ax)^{2}}{2!} + ....Comparing coefficients of both sides we get, na=8,na = 8, and n(n1)a22!=24\frac{n(n - 1)a^{2}}{2!} = 24 on solving, a=2a = 2, b = 4.`