Solveeit Logo

Question

Question: If \(1,{a_1},{a_2}.....,{a_{n - 1}}\) are the nth roots of unity then the value of \(\left( {1 - {a_...

If 1,a1,a2.....,an11,{a_1},{a_2}.....,{a_{n - 1}} are the nth roots of unity then the value of (1a1)(1a2)......(1an1)\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)......\left( {1 - {a_{n - 1}}} \right) is equal to
(A) 3\sqrt 3
(B) 12\dfrac{1}{2}
(C) nn
(D) 00

Explanation

Solution

If 1,a1,a2.....,an11,{a_1},{a_2}.....,{a_{n - 1}} are the nth{n^{th}} roots of unity, that means they are the roots of the equation xn1=0{x^n} - 1 = 0 . Express the roots of this equation in form of a product, i.e. xn1=(x1)(xa1)(xa2).....(xan2)(xan1){x^n} - 1 = \left( {x - 1} \right)\left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right) . Now use the expansion of (xn1)\left( {{x^n} - 1} \right) in the left-hand side of the previous equation. Transpose the terms to obtain the required expression on one side. Put the value x=1x = 1 to find the desired answer.

Complete step-by-step answer:
Here in this problem, we are given that 1,a1,a2.....,an11,{a_1},{a_2}.....,{a_{n - 1}} are the nth{n^{th}} roots of unity, i.e. nth{n^{th}} roots of 11 . And then we need to find the value of the expression (1a1)(1a2)......(1an1)\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)......\left( {1 - {a_{n - 1}}} \right) . We need to find the correct answer among the four given options.
Let’s discuss what is the nth{n^{th}} roots of unity.
As we know that the equation having a power of n'n' over the variable will have n'n' number of roots. So when we consider the equation: xn=1{x^n} = 1 , here we know that the variable ‘x’ can obtain ‘n’ number of roots. And these are hence called the nth{n^{th}} roots of unity.
So, according to the question 1,a1,a2.....,an11,{a_1},{a_2}.....,{a_{n - 1}} are the ‘n’ roots of the equation xn=1{x^n} = 1 , this can be represented by:
xn=1xn1=0\Rightarrow {x^n} = 1 \Rightarrow {x^n} - 1 = 0
The product of difference of all the roots with the variable will be equal to zero. Now putting 1,a1,a2.....,an11,{a_1},{a_2}.....,{a_{n - 1}} as the roots of this equation, we get:
xn1=(x1)(xa1)(xa2).....(xan2)(xan1)\Rightarrow {x^n} - 1 = \left( {x - 1} \right)\left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)
This can be further simplified by transposing the term (x1)\left( {x - 1} \right) to the left side
xn1x1=(xa1)(xa2).....(xan2)(xan1)\Rightarrow \dfrac{{{x^n} - 1}}{{x - 1}} = \left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)
As we know the expansion from the binomial theorem, xn1=(x1)(xn1+xn2+......+x2+x+1){x^n} - 1 = \left( {x - 1} \right)\left( {{x^{n - 1}} + {x^{n - 2}} + ...... + {x^2} + x + 1} \right) . We can use this in the above equation:
xn1x1=(xn1+xn2+......+x2+x+1)=(xa1)(xa2).....(xan2)(xan1)\Rightarrow \dfrac{{{x^n} - 1}}{{x - 1}} = \left( {{x^{n - 1}} + {x^{n - 2}} + ...... + {x^2} + x + 1} \right) = \left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)
Therefore, we get:
(xn1+xn2+......+x2+x+1)=(xa1)(xa2).....(xan2)(xan1)\Rightarrow \left( {{x^{n - 1}} + {x^{n - 2}} + ...... + {x^2} + x + 1} \right) = \left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)
For obtaining the expression (1a1)(1a2)......(1an1)\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)......\left( {1 - {a_{n - 1}}} \right)on the right side of the equation, we must substitute the value x=1x = 1 on both sides of the above equation.
For x=1x = 1, we get:
(1n1+1n2+......+12+1+1)=(1a1)(1a2).....(1an2)(1an1)\Rightarrow \left( {{1^{n - 1}} + {1^{n - 2}} + ...... + {1^2} + 1 + 1} \right) = \left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right).....\left( {1 - {a_{n - 2}}} \right)\left( {1 - {a_{n - 1}}} \right)
Since we know 1m=1{1^m} = 1 , so on further solving it, we have:
(1a1)(1a2).....(1an2)(1an1)=(1n1+1n2+......+12+1+1)=(1+1+....n times)=1×n\Rightarrow \left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right).....\left( {1 - {a_{n - 2}}} \right)\left( {1 - {a_{n - 1}}} \right) = \left( {{1^{n - 1}} + {1^{n - 2}} + ...... + {1^2} + 1 + 1} \right) = \left( {1 + 1 + ....n{\text{ }}times} \right) = 1 \times n
Therefore, we get the value of expression as:
(1a1)(1a2).....(1an2)(1an1)=n\Rightarrow \left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right).....\left( {1 - {a_{n - 2}}} \right)\left( {1 - {a_{n - 1}}} \right) = n
Hence, the option (C) is the correct answer.

Note: In questions like this, the use of the power expansions series plays an important role. The expansion used in the above solution i.e. xn1=(x1)(xn1+xn2+......+x2+x+1){x^n} - 1 = \left( {x - 1} \right)\left( {{x^{n - 1}} + {x^{n - 2}} + ...... + {x^2} + x + 1} \right) is derived using the theorem, i.e. xnyn=(xy)(xn1+xn2y+xn3y2+.....+xyn2+yn1){x^n} - {y^n} = \left( {x - y} \right)\left( {{x^{n - 1}} + {x^{n - 2}}y + {x^{n - 3}}{y^2} + ..... + x{y^{n - 2}} + {y^{n - 1}}} \right) where we put y=1y = 1 .