Solveeit Logo

Question

Question: If \( 1.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} = \dfrac{{\left( {4n - 1} \right){5^{a + 1}} + b}}{{1...

If 1.5+2.52+3.53+....+n.5n=(4n1)5a+1+b161.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} = \dfrac{{\left( {4n - 1} \right){5^{a + 1}} + b}}{{16}} , then
A. a=n,b=1a = n,b = 1
B. a=n,b=5a = n,b = 5
C. a=1,b=5a = 1,b = 5
D. a=n,b=na = n,b = n

Explanation

Solution

First, we shall analyze the given information so that we are able to solve the given problem. Here, we are given that 1.5+2.52+3.53+....+n.5n=(4n1)5a+1+b161.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} = \dfrac{{\left( {4n - 1} \right){5^{a + 1}} + b}}{{16}}
We are asked to calculate the values of aa and bb . We need to consider Sn=1.5+2.52+3.53+....+n.5n{S_n} = 1.5 + {2.5^2} + {3.5^3} + .... + n{.5^n}
Then we shall multiply it by five. An, we need to subtract both the resultant equations. Then, we will note that the sequence is in geometric progression. Then we need to apply the formula of the sum of nth{n^{th}} terms of G.P
Formula to be used:
The formula to calculate the sum of nth{n^{th}} terms of G.P is as follows.
Sn=a(rn1)r1,r>1{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}},r > 1 where aa is the first term of G.P, rr is the common ratio of G.P, and is nn the number of terms.

Complete step by step answer:
It is given that 1.5+2.52+3.53+....+n.5n=(4n1)5a+1+b161.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} = \dfrac{{\left( {4n - 1} \right){5^{a + 1}} + b}}{{16}}
We are asked to calculate the values of aa and bb .
Let Sn=1.5+2.52+3.53+....+n.5n{S_n} = 1.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} ……. (1)\left( 1 \right)
We need to multiply the equation (1)\left( 1 \right) by 55
Hence, we get
5Sn=1.5×5+2.52×5+3.53×5+....+n.5n×55{S_n} = 1.5 \times 5 + {2.5^2} \times 5 + {3.5^3} \times 5 + .... + n{.5^n} \times 5
5Sn=1.52+2.53+3.54+....+n.5n+15{S_n} = {1.5^2} + {2.5^3} + {3.5^4} + .... + n{.5^{n + 1}} ………. (2)\left( 2 \right)
We need to subtract the equation (1)\left( 1 \right) from the equation (2)\left( 2 \right) .
Sn5Sn=1.5+2.52+3.53+....+n.5n1.522.533.54....(n1)5nn.5n+1{S_n} - 5{S_n} = 1.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} - {1.5^2} - {2.5^3} - {3.5^4} - ....\left( {n - 1} \right){5^n} - n{.5^{n + 1}}
4Sn=1.5+2.521.52+3.532.53+....+n.5n(n1)5nn.5n+1- 4{S_n} = 1.5 + {2.5^2} - {1.5^2} + {3.5^3} - {2.5^3} + .... + n{.5^n} - \left( {n - 1} \right){5^n} - n{.5^{n + 1}}
4Sn=1.5+1.52+1.53+....+1.5nn.5n+1\Rightarrow - 4{S_n} = 1.5 + {1.5^2} + {1.5^3} + .... + {1.5^n} - n{.5^{n + 1}} ………… (3)\left( 3 \right)
Here, we shall note that 1.5+1.52+1.53+....+1.5n1.5 + {1.5^2} + {1.5^3} + .... + {1.5^n} is in geometric progression.
1.5+1.52+1.53+....+1.5n=1.5+1.5×5+1.5×52+....+1.5×5n11.5 + {1.5^2} + {1.5^3} + .... + {1.5^n} = 1.5 + 1.5 \times 5 + 1.5 \times {5^2} + .... + 1.5 \times {5^{n - 1}}
Hence the first term will be a=5a = 5 and the common ratio will be r=525=5r = \dfrac{{{5^2}}}{5} = 5
Now, we shall apply the formula of the sum of nth{n^{th}} terms of G.P, Sn=a(rn1)r1,r>1{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}},r > 1
1.5+1.52+1.53+....+1.5n=1.5+1.5×5+1.5×52+....+1.5×5n11.5 + {1.5^2} + {1.5^3} + .... + {1.5^n} = 1.5 + 1.5 \times 5 + 1.5 \times {5^2} + .... + 1.5 \times {5^{n - 1}}
=5(5n1)51= \dfrac{{5\left( {{5^n} - 1} \right)}}{{5 - 1}}
=5(5n1)4= \dfrac{{5\left( {{5^n} - 1} \right)}}{4}
Now, we shall substitute the above result in the equation (3)\left( 3 \right) .
4Sn=1.5+1.52+1.53+....+1.5nn.5n+1\Rightarrow - 4{S_n} = 1.5 + {1.5^2} + {1.5^3} + .... + {1.5^n} - n{.5^{n + 1}}
4Sn=5(5n1)4n.5n+1\Rightarrow - 4{S_n} = \dfrac{{5\left( {{5^n} - 1} \right)}}{4} - n{.5^{n + 1}}
=5n+154n.5n+1= \dfrac{{{5^{n + 1}} - 5}}{4} - n{.5^{n + 1}}
=5n+154n.5n+14= \dfrac{{{5^{n + 1}} - 5 - 4n{{.5}^{n + 1}}}}{4}
16Sn=5n+14n.5n+15\Rightarrow - 16{S_n} = {5^{n + 1}} - 4n{.5^{n + 1}} - 5
16Sn=5n+1(14n)5\Rightarrow - 16{S_n} = {5^{n + 1}}\left( {1 - 4n} \right) - 5
Multiplying throughout by minus sign, we get
16Sn=5n+1(4n1)+5\Rightarrow 16{S_n} = {5^{n + 1}}\left( {4n - 1} \right) + 5
Sn=116[5n+1(4n1)+5]\Rightarrow {S_n} = \dfrac{1}{{16}}\left[ {{5^{n + 1}}\left( {4n - 1} \right) + 5} \right]
Sn=116[(4n1)5n+1+5]\Rightarrow {S_n} = \dfrac{1}{{16}}\left[ {\left( {4n - 1} \right){5^{n + 1}} + 5} \right] …………. (4)\left( 4 \right)
It is given that Sn={S_n} = 1.5+2.52+3.53+....+n.5n=(4n1)5a+1+b161.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} = \dfrac{{\left( {4n - 1} \right){5^{a + 1}} + b}}{{16}} ………….. (5)\left( 5 \right)
Now, we shall compare the equations (4)\left( 4 \right) and (5)\left( 5 \right)
That is,
116[(4n1)5n+1+5]=(4n1)5a+1+b16\dfrac{1}{{16}}\left[ {\left( {4n - 1} \right){5^{n + 1}} + 5} \right] = \dfrac{{\left( {4n - 1} \right){5^{a + 1}} + b}}{{16}}
Since all the terms are equal except aa and bb , we can get the answer a=n,b=5a = n,b = 5

So, the correct answer is “Option B”.

Note: If we are given the sum of nth{n^{th}} terms of G.P, then we need to apply the formula Sn=a(rn1)r1,r>1{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}},r > 1 and Sn=a(1rn)1r,r1{S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}},r \ne 1 where aa is the first term of G.P, rr is the common ratio of G.P and is nn the number of terms.
Since the common ratio is greater than one, we applied the formula Sn=a(rn1)r1,r>1{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}},r > 1
Suppose the common ratio is smaller than one, we need to apply the formula Sn=a(1rn)1r,r1{S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}},r \ne 1