Solveeit Logo

Question

Question: If (1 + 3p)/3, (1 – p)/4 and (1 – 2p)/2 are the probabilities of three mutually exclusive events, th...

If (1 + 3p)/3, (1 – p)/4 and (1 – 2p)/2 are the probabilities of three mutually exclusive events, then the set of all values of p is –

A

13\frac { 1 } { 3 } £ p £ 12\frac { 1 } { 2 }

B

13\frac { 1 } { 3 } < p < 12\frac { 1 } { 2 }

C

12\frac { 1 } { 2 } £ p £23\frac { 2 } { 3 }

D

12\frac { 1 } { 2 } < p < 23\frac { 2 } { 3 }

Answer

13\frac { 1 } { 3 } £ p £ 12\frac { 1 } { 2 }

Explanation

Solution

Since (1+3p)3\frac { ( 1 + 3 p ) } { 3 } ,(12p2)\left( \frac { 1 - 2 p } { 2 } \right)are the probabilities of the three events, we must have

0 £ 1+3p3\frac { 1 + 3 p } { 3 } £ 1, 0 £ 1p4\frac { 1 - \mathrm { p } } { 4 } £ 1 and 0 £ 12p2\frac { 1 - 2 p } { 2 } £ 1

Ž –1 £ 3p £ 2, –3 £ p £ 1 and –1 £ 2p £ 1

Ž –12\frac { 1 } { 2 }

Also as 1+3p3\frac { 1 + 3 p } { 3 }, 1p4\frac { 1 - \mathrm { p } } { 4 } and are the probabilities of three mutually exclusive events

0 £ 1+3p3\frac { 1 + 3 p } { 3 } + 1p4\frac { 1 - \mathrm { p } } { 4 } + 12p2\frac { 1 - 2 p } { 2 } £ 1

Ž 0 £ 4 + 12p + 3 – 3p + 6 – 12p £ 12 Ž 13\frac { 1 } { 3 } £ p £ 133\frac { 13 } { 3 }

Thus the required value of p are such that

Max. {13,3,12,13}\left\{ - \frac { 1 } { 3 } , - 3 , - \frac { 1 } { 2 } , \frac { 1 } { 3 } \right\}£ p min.{23,1,12,133}\left\{ \frac { 2 } { 3 } , 1 , \frac { 1 } { 2 } , \frac { 13 } { 3 } \right\}

Ž 13\frac { 1 } { 3 } £ p £ 12\frac { 1 } { 2 }