Solveeit Logo

Question

Question: If \(( 1 + 3 p ) / 3 , ( 1 - p ) / 4\) and \(( 1 - 2 p ) / 2\) are the probabilities of three mut...

If (1+3p)/3,(1p)/4( 1 + 3 p ) / 3 , ( 1 - p ) / 4 and (12p)/2( 1 - 2 p ) / 2 are the probabilities

of three mutually exclusive events, then the set of all values of p is

A

13p12\frac { 1 } { 3 } \leq p \leq \frac { 1 } { 2 }

B

13<p<12\frac { 1 } { 3 } < p < \frac { 1 } { 2 }

C

12p23\frac { 1 } { 2 } \leq p \leq \frac { 2 } { 3 }

D

12<p<23\frac { 1 } { 2 } < p < \frac { 2 } { 3 }

Answer

13p12\frac { 1 } { 3 } \leq p \leq \frac { 1 } { 2 }

Explanation

Solution

Since (1+3p)3,(1p)4\frac { ( 1 + 3 p ) } { 3 } , \frac { ( 1 - p ) } { 4 } and (12p2)\left( \frac { 1 - 2 p } { 2 } \right) are the probabilities of the three events, we must have

012p210 \leq \frac { 1 - 2 p } { 2 } \leq 1

13p2,3p1- 1 \leq 3 p \leq 2 , - 3 \leq p \leq 1 and 12p1- 1 \leq 2 p \leq 1

13p23,3p1- \frac { 1 } { 3 } \leq p \leq \frac { 2 } { 3 } , - 3 \leq p \leq 1 and 12p12- \frac { 1 } { 2 } \leq p \leq \frac { 1 } { 2 } .

Also as 12p2\frac { 1 - 2 p } { 2 } are the probabilities of three mutually exclusive events,

01+3p3+1p4+12p210 \leq \frac { 1 + 3 p } { 3 } + \frac { 1 - p } { 4 } + \frac { 1 - 2 p } { 2 } \leq 1

04+12p+33p+612p120 \leq 4 + 12 p + 3 - 3 p + 6 - 12 p \leq 1213p133\frac { 1 } { 3 } \leq p \leq \frac { 13 } { 3 }

Thus the required values of p are such that

max{13,3,12,13}pmin{23,1,12,133}\max \left\{ - \frac { 1 } { 3 } , - 3 , - \frac { 1 } { 2 } , \frac { 1 } { 3 } \right\} \leq p \leq \min \left\{ \frac { 2 } { 3 } , 1 , \frac { 1 } { 2 } , \frac { 13 } { 3 } \right\}13p12\frac { 1 } { 3 } \leq p \leq \frac { 1 } { 2 }.