Question
Question: If (1 + 3 + 5 + … + p) + (1 + 3 + 5 + … + q) = (1 + 3 + 5 + … + r) where each set of parentheses co...
If (1 + 3 + 5 + … + p) + (1 + 3 + 5 + … + q)
= (1 + 3 + 5 + … + r) where each set of parentheses contains the sum of consecutive odd integers as shown, the smallest possible value of p + q + r, (where p > 6) is –
A
12
B
21
C
45
D
54
Answer
21
Explanation
Solution
We know that
1 + 3 + 5 + … + (2k – 1) = k2
Thus, the given equation can be written as
(2p+1)2+(2q+1)2=(2r+1)2
̃ (p + 1)2 + (q + 1)2 = (r + 1)2
Therefore, (p + 1, q + 1, r + 1) forms a Pythagorean triplet. As p > 6, p + 1 > 7.
The first Pythagorean triplet containing a number > 7
is (6, 8, 10).
\ We may take p + 1 = 8, q + 1 = 6, r + 1 = 10
̃ p + q + r = 21.